Spaces:
Runtime error
Runtime error
File size: 6,950 Bytes
015caa4 42c5746 2ca3f6c 42c5746 2ca3f6c 42c5746 015caa4 2ca3f6c bf03981 2ca3f6c d9bdd21 f57b62a d9bdd21 7f18248 42c5746 2ca3f6c 42c5746 4605337 42c5746 f50d4d3 42c5746 2ca3f6c f50d4d3 2ca3f6c f50d4d3 2ca3f6c f50d4d3 2ca3f6c 42c5746 2ca3f6c 42c5746 7f18248 42c5746 7f18248 42c5746 7f18248 42c5746 7f18248 42c5746 7f18248 42c5746 7f18248 42c5746 7f18248 42c5746 2ca3f6c 42c5746 7f18248 42c5746 7f18248 42c5746 7f18248 9f9bd33 3a83ffe 42c5746 2ca3f6c 7919a27 3a83ffe 7f18248 b2371fa 0e59933 015caa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import pandas as pd
from pytube import extract
import re
import string
import pickle
import nltk
import nltk.sentiment.util
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from tensorflow import keras
from youtube_comment_downloader import *
nltk.download('punkt')
nltk.download('wordnet')
# get YouTube ID
def getID(url):
print("Getting YouTube ID...")
return extract.video_id(url)
# function to clean comments
def clean_text(text):
lemmatizer = WordNetLemmatizer()
# stopwords
sw = ["i","me","my","myself","we","our","ours","ourselves","you","you're","you've","you'll","you'd","your","yours","yourself","yourselves","he","him","his","himself","she","she's","her","hers","herself","it","it's","its","itself","they","them","their","theirs","themselves","what","which","who","whom","this","that","that'll","these","those","am","is","are","was","were","be","been","being","have","has","had","having","do","does","did","doing","a","an","the","and","but","if","or","because","as","until","while","of","at","by","for","with","about","against","between","into","through","during","before","after","above","below","to","from","up","down","in","out","on","off","over","under","again","further","then","once","here","there","when","where","why","how","all","any","both","each","few","more","most","other","some","such","no","nor","not","only","own","same","so","than","too","very","s","t","can","will","just","don","don't","should","should've","now","d","ll","m","o","re","ve","y","ain","aren","aren't","couldn","couldn't","didn","didn't","doesn","doesn't","hadn","hadn't","hasn","hasn't","haven","haven't","isn","isn't","ma","mightn","mightn't","mustn","mustn't","needn","needn't","shan","shan't","shouldn","shouldn't","wasn","wasn't","weren","weren't","won","won't","wouldn","wouldn't"]
# remove symbols and Emojis
text = text.lower()
text = re.sub('@', '', text)
text = re.sub('\[.*?\]', '', text)
text = re.sub('https?://\S+|www\.\S+', '', text)
text = re.sub('<.*?>+', '', text)
text = re.sub('[%s]' % re.escape(string.punctuation), '', text)
text = re.sub('\n', '', text)
text = re.sub('\w*\d\w*', '', text)
text = re.sub(r"[^a-zA-Z ]+", "", text)
# tokenize the data
text = nltk.word_tokenize(text)
# lemmatize
text = [lemmatizer.lemmatize(t) for t in text]
text = [lemmatizer.lemmatize(t, 'v') for t in text]
# mark Negation
tokens_neg_marked = nltk.sentiment.util.mark_negation(text)
# remove stopwords
text = [t for t in tokens_neg_marked
if t.replace("_NEG", "").isalnum() and
t.replace("_NEG", "") not in sw]
return text
def getSentenceTrain():
# open sentences_train file
sentences_train_f = open('Deep learning/pickles/sentences_train.pickle', "rb")
sentences_train = pickle.load(sentences_train_f)
sentences_train_f.close()
return sentences_train
SGD_74_f = open('Shallow machine learning/pickles/SGD_74.pickle', "rb")
SGD_train = pickle.load(SGD_74_f)
SGD_74_f.close()
logreg_79_f = open('Shallow machine learning/pickles/logreg_79.pickle', "rb")
logreg_train = pickle.load(logreg_79_f)
logreg_79_f.close()
# get saved CNN model
model = keras.models.load_model("Deep learning/CNN_82")
def vote(test_point, _test):
print("Voting on video effectivess...\n")
pos_weighting = []
result = ''
confidence = 0
algos_score = 0
algorithms = [
{'name': 'SGD', 'accuracy': 0.74*100, 'trained': SGD_train},
{'name': 'Logistic Regression', 'accuracy': 0.79*100, 'trained': logreg_train},
{'name': 'CNN', 'accuracy': 0.82*100, 'trained': model}
]
for algo in algorithms:
weight = algo['accuracy']
algos_score += weight
if algo['name'] == "CNN":
pred = algo['trained'].predict(_test)
if pred[0][0] > 0.5:
pos_weighting.append(weight)
print("CNN voted for: effective" if pred[0][0]>0.5 else "CNN voted for: ineffective")
else:
pred = algo['trained'].predict(test_point)
if pred == 'pos':
pos_weighting.append(weight)
print(algo['name'] + " voted for: effective" if pred=='pos' else algo['name'] + " voted for: ineffective")
pos_result = sum(pos_weighting)/algos_score
if pos_result < 0.5:
result = 'ineffective'
confidence = 1 - pos_result
else:
result = 'effective'
confidence = pos_result
return result, confidence
def quantizeEffectiveness(url):
# 1. Get YouTube ID
print("Getting YouTube ID...")
videoId = getID(url)
# 2. Download comments
print("Downloading comments...")
downloader = YoutubeCommentDownloader()
comments_downloaded = downloader.get_comments_from_url(f'https://www.youtube.com/watch?v={videoId}')
comments = [comment for comment in comments_downloaded]
comments_df = pd.DataFrame(comments)
# 3. Clean comments
print("Cleaning Comments...")
comments_df['text'] = comments_df['text'].apply(lambda x: clean_text(x))
# get all words of video into one list
all_words = [item for sublist in comments_df['text'].tolist() for item in sublist]
# 4. Create test dataframe
test = pd.DataFrame([[videoId]], columns=['VideoId'])
# 5. Get documents (pre-processd comments)
test_documents = []
test_documents.append(all_words)
test['cleaned'] = test_documents
test['cleaned_string'] = [' '.join(map(str, l)) for l in test['cleaned']]
# 6. Get ML test point
test_point = test['cleaned_string']
test_sentence = test['cleaned_string'].values
# 7. Get trained sentences
sentences_train = getSentenceTrain()
# 8. Tokenize the data
print("Tokenizing the data...")
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(sentences_train)
# 9. Get DL test point
_test = pad_sequences(tokenizer.texts_to_sequences(test_sentence), padding='post', maxlen=100)
# 10. Vote on video effectiveness
result, confidence = vote(test_point, _test)
return result, confidence
def is_valid_youtube_url(text):
youtube_regex = re.compile(r"^(https?://)?(www\.)?(youtube\.com/watch\?v=|youtu\.be/|youtube\.com/embed/|youtube\.com/v/|youtube\.com/user/[^/]+/u/)?([^/&?=\s]{11})$")
return bool(youtube_regex.match(text))
def greet(url):
if not is_valid_youtube_url(url):
return "Please input a valid YouTube URL"
result, confidence = quantizeEffectiveness(url)
return f"The video (ID: {getID(url)}) is {result} with a confidence of {round(confidence*100,2)}%"
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch() |