Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,236 +1,162 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
-
import pandas as pd
|
6 |
import gradio as gr
|
7 |
-
import
|
8 |
-
|
9 |
from langchain_core.messages import HumanMessage
|
10 |
-
from smolagents import GradioUI, CodeAgent, HfApiModel, Tool
|
11 |
|
12 |
-
|
|
|
13 |
from langchain_community.tools import DuckDuckGoSearchRun
|
14 |
|
15 |
-
# Initialize the Hugging Face model
|
16 |
-
model = HfApiModel()
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
|
21 |
-
|
|
|
22 |
class CustomSearchTool(Tool):
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
super().__init__()
|
25 |
-
self.search_tool = search_tool
|
26 |
-
self.description = "A custom search tool that uses DuckDuckGo to perform web searches."
|
27 |
-
self.name = "custom_search_tool"
|
28 |
|
29 |
-
def run(self, query):
|
30 |
-
return self.
|
|
|
31 |
|
32 |
-
#
|
33 |
-
|
|
|
34 |
|
35 |
-
# Initialize the agent with the custom tool
|
36 |
agent = CodeAgent(
|
37 |
-
tools=[
|
38 |
model=model,
|
39 |
-
add_base_tools=True,
|
40 |
-
planning_interval=3
|
41 |
)
|
42 |
|
43 |
-
if __name__ == "__main__":
|
44 |
-
GradioUI(agent).launch()
|
45 |
-
|
46 |
-
# (Keep Constants as is)
|
47 |
-
# --- Constants ---
|
48 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
49 |
|
50 |
-
# ---
|
51 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
52 |
class BasicAgent:
|
53 |
def __init__(self):
|
54 |
-
|
|
|
|
|
55 |
def __call__(self, question: str) -> str:
|
56 |
-
print(f"
|
57 |
messages = [HumanMessage(content=question)]
|
58 |
-
|
59 |
-
answer =
|
60 |
-
|
|
|
61 |
|
62 |
-
print(f"Agent returning fixed answer: {answer}")
|
63 |
-
return answer
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
and displays the results.
|
69 |
-
"""
|
70 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
71 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
72 |
|
73 |
if profile:
|
74 |
-
username=
|
75 |
-
print(f"User logged in: {username}")
|
76 |
else:
|
77 |
-
|
78 |
-
return "Please Login to Hugging Face with the button.", None
|
79 |
|
80 |
api_url = DEFAULT_API_URL
|
81 |
questions_url = f"{api_url}/questions"
|
82 |
submit_url = f"{api_url}/submit"
|
|
|
83 |
|
84 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
85 |
try:
|
86 |
-
|
87 |
except Exception as e:
|
88 |
-
|
89 |
-
return f"Error initializing agent: {e}", None
|
90 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
91 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
92 |
-
print(agent_code)
|
93 |
|
94 |
-
#
|
95 |
-
print(f"Fetching questions from: {questions_url}")
|
96 |
try:
|
97 |
response = requests.get(questions_url, timeout=15)
|
98 |
response.raise_for_status()
|
99 |
questions_data = response.json()
|
100 |
-
if not questions_data:
|
101 |
-
print("Fetched questions list is empty.")
|
102 |
-
return "Fetched questions list is empty or invalid format.", None
|
103 |
-
print(f"Fetched {len(questions_data)} questions.")
|
104 |
-
except requests.exceptions.RequestException as e:
|
105 |
-
print(f"Error fetching questions: {e}")
|
106 |
-
return f"Error fetching questions: {e}", None
|
107 |
-
except requests.exceptions.JSONDecodeError as e:
|
108 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
109 |
-
print(f"Response text: {response.text[:500]}")
|
110 |
-
return f"Error decoding server response for questions: {e}", None
|
111 |
except Exception as e:
|
112 |
-
|
113 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
114 |
|
115 |
-
#
|
116 |
results_log = []
|
117 |
answers_payload = []
|
118 |
-
|
119 |
for item in questions_data:
|
120 |
task_id = item.get("task_id")
|
121 |
question_text = item.get("question")
|
122 |
if not task_id or question_text is None:
|
123 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
124 |
continue
|
125 |
try:
|
126 |
-
submitted_answer =
|
127 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
128 |
-
results_log.append({
|
|
|
|
|
|
|
|
|
129 |
except Exception as e:
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
132 |
|
133 |
if not answers_payload:
|
134 |
-
|
135 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
136 |
|
137 |
-
#
|
138 |
-
submission_data = {
|
139 |
-
|
140 |
-
|
|
|
|
|
141 |
|
142 |
-
# 5. Submit
|
143 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
144 |
try:
|
145 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
146 |
response.raise_for_status()
|
147 |
result_data = response.json()
|
|
|
148 |
final_status = (
|
149 |
-
f"Submission Successful!\n"
|
150 |
f"User: {result_data.get('username')}\n"
|
151 |
-
f"
|
152 |
-
f"
|
153 |
f"Message: {result_data.get('message', 'No message received.')}"
|
154 |
)
|
155 |
-
|
156 |
-
results_df = pd.DataFrame(results_log)
|
157 |
-
return final_status, results_df
|
158 |
-
except requests.exceptions.HTTPError as e:
|
159 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
160 |
-
try:
|
161 |
-
error_json = e.response.json()
|
162 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
163 |
-
except requests.exceptions.JSONDecodeError:
|
164 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
165 |
-
status_message = f"Submission Failed: {error_detail}"
|
166 |
-
print(status_message)
|
167 |
-
results_df = pd.DataFrame(results_log)
|
168 |
-
return status_message, results_df
|
169 |
-
except requests.exceptions.Timeout:
|
170 |
-
status_message = "Submission Failed: The request timed out."
|
171 |
-
print(status_message)
|
172 |
-
results_df = pd.DataFrame(results_log)
|
173 |
-
return status_message, results_df
|
174 |
-
except requests.exceptions.RequestException as e:
|
175 |
-
status_message = f"Submission Failed: Network error - {e}"
|
176 |
-
print(status_message)
|
177 |
-
results_df = pd.DataFrame(results_log)
|
178 |
-
return status_message, results_df
|
179 |
except Exception as e:
|
180 |
-
|
181 |
-
|
182 |
-
results_df = pd.DataFrame(results_log)
|
183 |
-
return status_message, results_df
|
184 |
|
185 |
-
# ---
|
186 |
with gr.Blocks() as demo:
|
187 |
-
gr.Markdown("
|
188 |
gr.Markdown(
|
189 |
-
""
|
190 |
-
**Instructions:**
|
191 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
192 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
193 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
194 |
-
---
|
195 |
-
**Disclaimers:**
|
196 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
197 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
198 |
-
"""
|
199 |
)
|
200 |
|
201 |
gr.LoginButton()
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
206 |
-
# Removed max_rows=10 from DataFrame constructor
|
207 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
208 |
|
209 |
run_button.click(
|
210 |
fn=run_and_submit_all,
|
211 |
outputs=[status_output, results_table]
|
212 |
)
|
213 |
|
214 |
-
if __name__ == "__main__":
|
215 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
216 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
217 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
218 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
219 |
-
|
220 |
-
if space_host_startup:
|
221 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
222 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
223 |
-
else:
|
224 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
225 |
-
|
226 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
227 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
228 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
229 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
230 |
-
else:
|
231 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
232 |
-
|
233 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
234 |
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import requests
|
|
|
|
|
3 |
import gradio as gr
|
4 |
+
import pandas as pd
|
|
|
5 |
from langchain_core.messages import HumanMessage
|
|
|
6 |
|
7 |
+
from smolagents import GradioUI, CodeAgent, HfApiModel
|
8 |
+
from smolagents.tools import Tool
|
9 |
from langchain_community.tools import DuckDuckGoSearchRun
|
10 |
|
|
|
|
|
11 |
|
12 |
+
# --- Constants ---
|
13 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
+
|
16 |
+
# --- Custom Tool using DuckDuckGo ---
|
17 |
class CustomSearchTool(Tool):
|
18 |
+
name = "duckduckgo_search"
|
19 |
+
description = "Search the web for up-to-date information using DuckDuckGo."
|
20 |
+
inputs = ["query"]
|
21 |
+
outputs = ["result"]
|
22 |
+
|
23 |
+
def __init__(self):
|
24 |
+
self.search = DuckDuckGoSearchRun()
|
25 |
super().__init__()
|
|
|
|
|
|
|
26 |
|
27 |
+
def run(self, query: str) -> str:
|
28 |
+
return self.search.run(query)
|
29 |
+
|
30 |
|
31 |
+
# --- Initialize the model and tools ---
|
32 |
+
model = HfApiModel()
|
33 |
+
search_tool = CustomSearchTool()
|
34 |
|
|
|
35 |
agent = CodeAgent(
|
36 |
+
tools=[search_tool],
|
37 |
model=model,
|
38 |
+
add_base_tools=True,
|
39 |
+
planning_interval=3,
|
40 |
)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# --- Evaluation Agent Wrapper ---
|
|
|
44 |
class BasicAgent:
|
45 |
def __init__(self):
|
46 |
+
self.graph = agent
|
47 |
+
print("✅ BasicAgent initialized with SmolAgent.")
|
48 |
+
|
49 |
def __call__(self, question: str) -> str:
|
50 |
+
print(f"Received question: {question}")
|
51 |
messages = [HumanMessage(content=question)]
|
52 |
+
result = self.graph.invoke({"messages": messages})
|
53 |
+
answer = result['messages'][-1].content
|
54 |
+
print(f"Returning answer: {answer}")
|
55 |
+
return answer[14:] # optional slicing depending on model behavior
|
56 |
|
|
|
|
|
57 |
|
58 |
+
# --- Evaluation Logic ---
|
59 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
60 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if profile:
|
63 |
+
username = profile.username
|
64 |
+
print(f"🔐 User logged in: {username}")
|
65 |
else:
|
66 |
+
return "⚠️ Please log in to Hugging Face.", None
|
|
|
67 |
|
68 |
api_url = DEFAULT_API_URL
|
69 |
questions_url = f"{api_url}/questions"
|
70 |
submit_url = f"{api_url}/submit"
|
71 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
72 |
|
|
|
73 |
try:
|
74 |
+
agent_instance = BasicAgent()
|
75 |
except Exception as e:
|
76 |
+
return f"Agent initialization error: {e}", None
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
# 1. Fetch questions
|
|
|
79 |
try:
|
80 |
response = requests.get(questions_url, timeout=15)
|
81 |
response.raise_for_status()
|
82 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
except Exception as e:
|
84 |
+
return f"Error fetching questions: {e}", None
|
|
|
85 |
|
86 |
+
# 2. Run Agent
|
87 |
results_log = []
|
88 |
answers_payload = []
|
89 |
+
|
90 |
for item in questions_data:
|
91 |
task_id = item.get("task_id")
|
92 |
question_text = item.get("question")
|
93 |
if not task_id or question_text is None:
|
|
|
94 |
continue
|
95 |
try:
|
96 |
+
submitted_answer = agent_instance(question_text)
|
97 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
98 |
+
results_log.append({
|
99 |
+
"Task ID": task_id,
|
100 |
+
"Question": question_text,
|
101 |
+
"Submitted Answer": submitted_answer
|
102 |
+
})
|
103 |
except Exception as e:
|
104 |
+
results_log.append({
|
105 |
+
"Task ID": task_id,
|
106 |
+
"Question": question_text,
|
107 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
108 |
+
})
|
109 |
|
110 |
if not answers_payload:
|
111 |
+
return "Agent did not produce answers.", pd.DataFrame(results_log)
|
|
|
112 |
|
113 |
+
# 3. Submit answers
|
114 |
+
submission_data = {
|
115 |
+
"username": username.strip(),
|
116 |
+
"agent_code": agent_code,
|
117 |
+
"answers": answers_payload
|
118 |
+
}
|
119 |
|
|
|
|
|
120 |
try:
|
121 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
122 |
response.raise_for_status()
|
123 |
result_data = response.json()
|
124 |
+
|
125 |
final_status = (
|
126 |
+
f"✅ Submission Successful!\n"
|
127 |
f"User: {result_data.get('username')}\n"
|
128 |
+
f"Score: {result_data.get('score', 'N/A')}%\n"
|
129 |
+
f"Correct: {result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}\n"
|
130 |
f"Message: {result_data.get('message', 'No message received.')}"
|
131 |
)
|
132 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
except Exception as e:
|
134 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
135 |
+
|
|
|
|
|
136 |
|
137 |
+
# --- Gradio Interface ---
|
138 |
with gr.Blocks() as demo:
|
139 |
+
gr.Markdown("## 🧠 SmolAgent Evaluation App")
|
140 |
gr.Markdown(
|
141 |
+
"Log in with Hugging Face and click the button to fetch questions, run the agent, and submit answers."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
|
144 |
gr.LoginButton()
|
145 |
+
run_button = gr.Button("▶️ Run Evaluation & Submit All Answers")
|
146 |
+
status_output = gr.Textbox(label="Submission Status", lines=5, interactive=False)
|
147 |
+
results_table = gr.DataFrame(label="Agent Answers")
|
|
|
|
|
|
|
148 |
|
149 |
run_button.click(
|
150 |
fn=run_and_submit_all,
|
151 |
outputs=[status_output, results_table]
|
152 |
)
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
# --- App Launch ---
|
156 |
+
if __name__ == "__main__":
|
157 |
+
print("🚀 Launching app...")
|
158 |
+
space_id = os.getenv("SPACE_ID")
|
159 |
+
if space_id:
|
160 |
+
print(f"HF Space ID: {space_id}")
|
161 |
+
print(f"Repo: https://huggingface.co/spaces/{space_id}/tree/main")
|
162 |
+
demo.launch(debug=True)
|