Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,158 +1,66 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
|
4 |
-
|
5 |
-
from smolagents import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
def run(self, query: str) -> str:
|
21 |
-
print(f"[SearchTool] Searching DuckDuckGo for: {query}")
|
22 |
-
try:
|
23 |
-
with DDGS() as ddgs:
|
24 |
-
results = ddgs.text(query, max_results=3)
|
25 |
-
output = "\n".join([r["body"] for r in results if "body" in r])
|
26 |
-
return output.strip() or "No results found."
|
27 |
-
except Exception as e:
|
28 |
-
print(f"[SearchTool] Search failed: {e}")
|
29 |
-
return f"Search error: {e}"
|
30 |
-
|
31 |
-
# --- BasicAgent Class ---
|
32 |
-
class BasicAgent(SmolAgent):
|
33 |
-
def __init__(self):
|
34 |
-
model = InferenceClientModel("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
35 |
-
tools = [CustomSearchTool()]
|
36 |
-
super().__init__(model=model, tools=tools)
|
37 |
-
|
38 |
-
# --- Submission + Evaluation ---
|
39 |
-
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
40 |
-
space_id = os.getenv("SPACE_ID")
|
41 |
-
|
42 |
-
if profile:
|
43 |
-
username = f"{profile.username}"
|
44 |
-
print(f"User logged in: {username}")
|
45 |
-
else:
|
46 |
-
print("User not logged in.")
|
47 |
-
return "Please Login to Hugging Face with the button.", None
|
48 |
-
|
49 |
-
api_url = DEFAULT_API_URL
|
50 |
-
questions_url = f"{api_url}/questions"
|
51 |
-
submit_url = f"{api_url}/submit"
|
52 |
-
|
53 |
-
try:
|
54 |
-
agent = BasicAgent()
|
55 |
-
except Exception as e:
|
56 |
-
print(f"Error instantiating agent: {e}")
|
57 |
-
return f"Error initializing agent: {e}", None
|
58 |
-
|
59 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
60 |
-
print(f"Agent code: {agent_code}")
|
61 |
-
|
62 |
-
# Fetch questions
|
63 |
-
print(f"Fetching questions from: {questions_url}")
|
64 |
-
try:
|
65 |
-
response = requests.get(questions_url, timeout=15)
|
66 |
-
response.raise_for_status()
|
67 |
-
questions_data = response.json()
|
68 |
-
if not questions_data:
|
69 |
-
return "Fetched questions list is empty or invalid format.", None
|
70 |
-
except Exception as e:
|
71 |
-
return f"Error fetching questions: {e}", None
|
72 |
-
|
73 |
-
results_log = []
|
74 |
-
answers_payload = []
|
75 |
-
|
76 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
77 |
-
for item in questions_data:
|
78 |
-
task_id = item.get("task_id")
|
79 |
-
question_text = item.get("question")
|
80 |
-
if not task_id or question_text is None:
|
81 |
-
continue
|
82 |
-
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({
|
86 |
-
"Task ID": task_id,
|
87 |
-
"Question": question_text,
|
88 |
-
"Submitted Answer": submitted_answer
|
89 |
-
})
|
90 |
-
except Exception as e:
|
91 |
-
results_log.append({
|
92 |
-
"Task ID": task_id,
|
93 |
-
"Question": question_text,
|
94 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
95 |
-
})
|
96 |
|
97 |
-
|
98 |
-
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
"
|
104 |
-
|
105 |
-
}
|
106 |
-
try:
|
107 |
-
response = requests.post(submit_url, json=submission_data, timeout=60)
|
108 |
-
response.raise_for_status()
|
109 |
-
result_data = response.json()
|
110 |
-
final_status = (
|
111 |
-
f"Submission Successful!\n"
|
112 |
-
f"User: {result_data.get('username')}\n"
|
113 |
-
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
114 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
115 |
-
f"Message: {result_data.get('message', 'No message received.')}"
|
116 |
)
|
117 |
-
return final_status, pd.DataFrame(results_log)
|
118 |
-
except Exception as e:
|
119 |
-
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
139 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
140 |
-
|
141 |
-
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
142 |
-
|
143 |
-
# --- Launch ---
|
144 |
-
if __name__ == "__main__":
|
145 |
-
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
146 |
-
space_host = os.getenv("SPACE_HOST")
|
147 |
-
space_id = os.getenv("SPACE_ID")
|
148 |
-
|
149 |
-
if space_host:
|
150 |
-
print(f"✅ SPACE_HOST found: {space_host}")
|
151 |
-
print(f" Runtime URL: https://{space_host}.hf.space")
|
152 |
-
if space_id:
|
153 |
-
print(f"✅ SPACE_ID found: {space_id}")
|
154 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
|
155 |
-
print("-" * 70 + "\n")
|
156 |
-
|
157 |
-
print("Launching Gradio Interface...")
|
158 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
+
import datasets
|
2 |
+
from langchain.docstore.document import Document
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain_community.retrievers import BM25Retriever
|
5 |
+
from smolagents import Tool, CodeAgent, InferenceClientModel
|
6 |
+
|
7 |
+
# Define RetrieverTool exactly as in your example
|
8 |
+
class RetrieverTool(Tool):
|
9 |
+
name = "retriever"
|
10 |
+
description = (
|
11 |
+
"Uses lexical search to retrieve the parts of transformers documentation most relevant to answer your query."
|
12 |
+
)
|
13 |
+
inputs = {
|
14 |
+
"query": {
|
15 |
+
"type": "string",
|
16 |
+
"description": "The query to perform. Use affirmative form rather than a question.",
|
17 |
+
}
|
18 |
+
}
|
19 |
+
output_type = "string"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
def __init__(self, docs, **kwargs):
|
22 |
+
super().__init__(**kwargs)
|
23 |
+
self.retriever = BM25Retriever.from_documents(docs, k=10)
|
24 |
|
25 |
+
def forward(self, query: str) -> str:
|
26 |
+
assert isinstance(query, str), "Query must be a string"
|
27 |
+
docs = self.retriever.invoke(query)
|
28 |
+
return "\nRetrieved documents:\n" + "".join(
|
29 |
+
[f"\n\n===== Document {i} =====\n{doc.page_content}" for i, doc in enumerate(docs)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
)
|
|
|
|
|
|
|
31 |
|
32 |
+
# Replace agent creation inside try block
|
33 |
+
try:
|
34 |
+
# Load and prepare docs once here
|
35 |
+
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train")
|
36 |
+
knowledge_base = knowledge_base.filter(lambda row: row["source"].startswith("huggingface/transformers"))
|
37 |
+
|
38 |
+
source_docs = [
|
39 |
+
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]})
|
40 |
+
for doc in knowledge_base
|
41 |
+
]
|
42 |
+
|
43 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
44 |
+
chunk_size=500,
|
45 |
+
chunk_overlap=50,
|
46 |
+
add_start_index=True,
|
47 |
+
strip_whitespace=True,
|
48 |
+
separators=["\n\n", "\n", ".", " ", ""],
|
49 |
+
)
|
50 |
+
docs_processed = text_splitter.split_documents(source_docs)
|
51 |
+
|
52 |
+
# Instantiate RetrieverTool with processed docs
|
53 |
+
retriever_tool = RetrieverTool(docs_processed)
|
54 |
+
|
55 |
+
# Instantiate the smolagents CodeAgent with model
|
56 |
+
agent = CodeAgent(
|
57 |
+
tools=[retriever_tool],
|
58 |
+
model=InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
|
59 |
+
max_steps=4,
|
60 |
+
verbosity_level=2,
|
61 |
+
stream_outputs=True,
|
62 |
)
|
63 |
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error instantiating agent: {e}")
|
66 |
+
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|