File size: 19,611 Bytes
9bf26a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
'''
 *  Project             :   Screenipy
 *  Author              :   Pranjal Joshi
 *  Created             :   28/04/2021
 *  Description         :   Class for managing misc and utility methods
'''

import os
import sys
import platform
import datetime
import pytz
import pickle
import requests
import time
import joblib
import keras
import pandas as pd
from alive_progress import alive_bar
from tabulate import tabulate
from time import sleep
from classes.ColorText import colorText
from classes.Changelog import VERSION, changelog
import classes.ConfigManager as ConfigManager

art = colorText.GREEN + '''
     .d8888b.                                             d8b                   
    d88P  Y88b                                            Y8P                   
    Y88b.                                                                       
     "Y888b.    .d8888b 888d888 .d88b.   .d88b.  88888b.  888 88888b.  888  888 
        "Y88b. d88P"    888P"  d8P  Y8b d8P  Y8b 888 "88b 888 888 "88b 888  888 
          "888 888      888    88888888 88888888 888  888 888 888  888 888  888 
    Y88b  d88P Y88b.    888    Y8b.     Y8b.     888  888 888 888 d88P Y88b 888 
     "Y8888P"   "Y8888P 888     "Y8888   "Y8888  888  888 888 88888P"   "Y88888 
                                                              888           888 
                                                              888      Y8b d88P 
                                                              888       "Y88P"  

''' + colorText.END

lastScreened = 'last_screened_results.pkl'
lastScreenedUnformatted = 'last_screened_unformatted_results.pkl'

# Class for managing misc and utility methods


class tools:

    def clearScreen():
        if platform.system() == 'Windows':
            os.system('cls')
        else:
            os.system('clear')
        print(art)

    # Print about developers and repository
    def showDevInfo():
        print('\n'+changelog)
        print(colorText.BOLD + colorText.WARN +
              "\n[+] Developer: Pranjal Joshi." + colorText.END)
        print(colorText.BOLD + colorText.WARN +
              ("[+] Version: %s" % VERSION) + colorText.END)
        print(colorText.BOLD +
              "[+] Home Page: https://github.com/pranjal-joshi/Screeni-py" + colorText.END)
        print(colorText.BOLD + colorText.FAIL +
              "[+] Read/Post Issues here: https://github.com/pranjal-joshi/Screeni-py/issues" + colorText.END)
        print(colorText.BOLD + colorText.GREEN +
              "[+] Join Community Discussions: https://github.com/pranjal-joshi/Screeni-py/discussions" + colorText.END)
        print(colorText.BOLD + colorText.BLUE +
              "[+] Download latest software from https://github.com/pranjal-joshi/Screeni-py/releases/latest" + colorText.END)
        input('')

    # Save last screened result to pickle file
    def setLastScreenedResults(df, unformatted=False):
        try:
            if not unformatted:
                df.sort_values(by=['Stock'], ascending=True, inplace=True)
                df.to_pickle(lastScreened)
            else:
                df.sort_values(by=['Stock'], ascending=True, inplace=True)
                df.to_pickle(lastScreenedUnformatted)
        except IOError:
            print(colorText.BOLD + colorText.FAIL +
                  '[+] Failed to save recently screened result table on disk! Skipping..' + colorText.END)
            
    # Load last screened result to pickle file
    def getLastScreenedResults():
        try:
            df = pd.read_pickle(lastScreened)
            print(colorText.BOLD + colorText.GREEN +
                  '\n[+] Showing recently screened results..\n' + colorText.END)
            print(tabulate(df, headers='keys', tablefmt='psql'))
            print(colorText.BOLD + colorText.WARN +
                  "[+] Note: Trend calculation is based on number of recent days to screen as per your configuration." + colorText.END)
            input(colorText.BOLD + colorText.GREEN +
                  '[+] Press any key to continue..' + colorText.END)
        except FileNotFoundError:
            print(colorText.BOLD + colorText.FAIL +
                  '[+] Failed to load recently screened result table from disk! Skipping..' + colorText.END)

    def isTradingTime():
        curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata'))
        openTime = curr.replace(hour=9, minute=15)
        closeTime = curr.replace(hour=15, minute=30)
        return ((openTime <= curr <= closeTime) and (0 <= curr.weekday() <= 4))

    def isClosingHour():
        curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata'))
        openTime = curr.replace(hour=15, minute=00)
        closeTime = curr.replace(hour=15, minute=30)
        return ((openTime <= curr <= closeTime) and (0 <= curr.weekday() <= 4))

    def saveStockData(stockDict, configManager, loadCount):
        curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata'))
        openTime = curr.replace(hour=9, minute=15)
        cache_date = datetime.date.today()  # for monday to friday
        weekday = datetime.date.today().weekday()
        if curr < openTime:  # for monday to friday before 9:15
            cache_date = datetime.datetime.today() - datetime.timedelta(1)
        if weekday == 0 and curr < openTime:  # for monday before 9:15
            cache_date = datetime.datetime.today() - datetime.timedelta(3)
        if weekday == 5 or weekday == 6:  # for saturday and sunday
            cache_date = datetime.datetime.today() - datetime.timedelta(days=weekday - 4)
        cache_date = cache_date.strftime("%d%m%y")
        cache_file = "stock_data_" + str(cache_date) + ".pkl"
        configManager.deleteStockData(excludeFile=cache_file)

        if not os.path.exists(cache_file) or len(stockDict) > (loadCount+1):
            with open(cache_file, 'wb') as f:
                try:
                    pickle.dump(stockDict.copy(), f)
                    print(colorText.BOLD + colorText.GREEN +
                          "=> Done." + colorText.END)
                except pickle.PicklingError:
                    print(colorText.BOLD + colorText.FAIL +
                          "=> Error while Caching Stock Data." + colorText.END)
        else:
            print(colorText.BOLD + colorText.GREEN +
                  "=> Already Cached." + colorText.END)

    def loadStockData(stockDict, configManager, proxyServer=None):
        curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata'))
        openTime = curr.replace(hour=9, minute=15)
        last_cached_date = datetime.date.today()  # for monday to friday after 3:30
        weekday = datetime.date.today().weekday()
        if curr < openTime:  # for monday to friday before 9:15
            last_cached_date = datetime.datetime.today() - datetime.timedelta(1)
        if weekday == 5 or weekday == 6:  # for saturday and sunday
            last_cached_date = datetime.datetime.today() - datetime.timedelta(days=weekday - 4)
        if weekday == 0 and curr < openTime:  # for monday before 9:15
            last_cached_date = datetime.datetime.today() - datetime.timedelta(3)
        last_cached_date = last_cached_date.strftime("%d%m%y")
        cache_file = "stock_data_" + str(last_cached_date) + ".pkl"
        if os.path.exists(cache_file):
            with open(cache_file, 'rb') as f:
                try:
                    stockData = pickle.load(f)
                    print(colorText.BOLD + colorText.GREEN +
                          "[+] Automatically Using Cached Stock Data due to After-Market hours!" + colorText.END)
                    for stock in stockData:
                        stockDict[stock] = stockData.get(stock)
                except pickle.UnpicklingError:
                    print(colorText.BOLD + colorText.FAIL +
                          "[+] Error while Reading Stock Cache." + colorText.END)
                except EOFError:
                    print(colorText.BOLD + colorText.FAIL +
                          "[+] Stock Cache Corrupted." + colorText.END)
        elif ConfigManager.default_period == configManager.period and ConfigManager.default_duration == configManager.duration:
            cache_url = "https://raw.github.com/pranjal-joshi/Screeni-py/actions-data-download/actions-data-download/" + cache_file
            if proxyServer is not None:
                resp = requests.get(cache_url, stream=True, proxies={'https':proxyServer})
            else:
                resp = requests.get(cache_url, stream=True)
            if resp.status_code == 200:
                print(colorText.BOLD + colorText.FAIL +
                      "[+] After-Market Stock Data is not cached.." + colorText.END)
                print(colorText.BOLD + colorText.GREEN +
                      "[+] Downloading cache from Screenipy server for faster processing, Please Wait.." + colorText.END)
                try:
                    chunksize = 1024*1024*1
                    filesize = int(int(resp.headers.get('content-length'))/chunksize)
                    bar, spinner = tools.getProgressbarStyle()
                    f = open(cache_file, 'wb')
                    dl = 0
                    with alive_bar(filesize, bar=bar, spinner=spinner, manual=True) as progressbar:
                        for data in resp.iter_content(chunk_size=chunksize):
                            dl += 1
                            f.write(data)
                            progressbar(dl/filesize)
                            if dl >= filesize:
                                progressbar(1.0)
                    f.close()
                except Exception as e:
                    print("[!] Download Error - " + str(e))
                print("")
                tools.loadStockData(stockDict, configManager, proxyServer)
            else:
                print(colorText.BOLD + colorText.FAIL +
                      "[+] Cache unavailable on Screenipy server, Continuing.." + colorText.END)

    # Save screened results to excel
    def promptSaveResults(df):
        if isDocker() or isGui():  # Skip export to excel inside docker
            return
        try:
            response = str(input(colorText.BOLD + colorText.WARN +
                                 '[>] Do you want to save the results in excel file? [Y/N]: ')).upper()
        except ValueError:
            response = 'Y'
        if response != 'N':
            filename = 'screenipy-result_' + \
                datetime.datetime.now().strftime("%d-%m-%y_%H.%M.%S")+".xlsx"
            df.to_excel(filename)
            print(colorText.BOLD + colorText.GREEN +
                  ("[+] Results saved to %s" % filename) + colorText.END)

    # Prompt for asking RSI
    def promptRSIValues():
        try:
            minRSI, maxRSI = int(input(colorText.BOLD + colorText.WARN + "\n[+] Enter Min RSI value: " + colorText.END)), int(
                input(colorText.BOLD + colorText.WARN + "[+] Enter Max RSI value: " + colorText.END))
            if (minRSI >= 0 and minRSI <= 100) and (maxRSI >= 0 and maxRSI <= 100) and (minRSI <= maxRSI):
                return (minRSI, maxRSI)
            raise ValueError
        except ValueError:
            return (0, 0)

    # Prompt for Reversal screening
    def promptReversalScreening():
        try:
            resp = int(input(colorText.BOLD + colorText.WARN + """\n[+] Select Option:
    1 > Screen for Buy Signal (Bullish Reversal)
    2 > Screen for Sell Signal (Bearish Reversal)
    3 > Screen for Momentum Gainers (Rising Bullish Momentum)
    4 > Screen for Reversal at Moving Average (Bullish Reversal)
    5 > Screen for Volume Spread Analysis (Bullish VSA Reversal)
    6 > Screen for Narrow Range (NRx) Reversal
    7 > Screen for Reversal using Lorentzian Classifier (Machine Learning based indicator)
    8 > Screen for Reversal using RSI MA Crossing
    0 > Cancel
[+] Select option: """ + colorText.END))
            if resp >= 0 and resp <= 8:
                if resp == 4:
                    try:
                        maLength = int(input(colorText.BOLD + colorText.WARN +
                                             '\n[+] Enter MA Length (E.g. 50 or 200): ' + colorText.END))
                        return resp, maLength
                    except ValueError:
                        print(colorText.BOLD + colorText.FAIL +
                              '\n[!] Invalid Input! MA Lenght should be single integer value!\n' + colorText.END)
                        raise ValueError
                elif resp == 6:
                    try:
                        maLength = int(input(colorText.BOLD + colorText.WARN +
                                             '\n[+] Enter NR timeframe [Integer Number] (E.g. 4, 7, etc.): ' + colorText.END))
                        return resp, maLength
                    except ValueError:
                        print(colorText.BOLD + colorText.FAIL + '\n[!] Invalid Input! NR timeframe should be single integer value!\n' + colorText.END)
                        raise ValueError
                elif resp == 7:
                    try:
                        return resp, 1
                    except ValueError:
                        print(colorText.BOLD + colorText.FAIL + '\n[!] Invalid Input! Select valid Signal Type!\n' + colorText.END)
                        raise ValueError
                elif resp == 8:
                    maLength = 9
                    return resp, maLength
                return resp, None
            raise ValueError
        except ValueError:
            return None, None

    # Prompt for Reversal screening
    def promptChartPatterns():
        try:
            resp = int(input(colorText.BOLD + colorText.WARN + """\n[+] Select Option:
    1 > Screen for Bullish Inside Bar (Flag) Pattern
    2 > Screen for Bearish Inside Bar (Flag) Pattern
    3 > Screen for the Confluence (50 & 200 MA/EMA)
    4 > Screen for VCP (Experimental)
    5 > Screen for Buying at Trendline (Ideal for Swing/Mid/Long term)
    0 > Cancel
[+] Select option: """ + colorText.END))
            if resp == 1 or resp == 2:
                candles = int(input(colorText.BOLD + colorText.WARN +
                                    "\n[+] How many candles (TimeFrame) to look back Inside Bar formation? : " + colorText.END))
                return (resp, candles)
            if resp == 3:
                percent = float(input(colorText.BOLD + colorText.WARN +
                                      "\n[+] Enter Percentage within which all MA/EMAs should be (Ideal: 1-2%)? : " + colorText.END))
                return (resp, percent/100.0)
            if resp >= 0 and resp <= 5:
                return resp, 0
            raise ValueError
        except ValueError:
            input(colorText.BOLD + colorText.FAIL +
                  "\n[+] Invalid Option Selected. Press Any Key to Continue..." + colorText.END)
            return (None, None)
        
    # Prompt for Similar stock search
    def promptSimilarStockSearch():
        try:
            stockCode = str(input(colorText.BOLD + colorText.WARN +
                                    "\n[+] Enter the Name of the stock to search similar stocks for: " + colorText.END)).upper()
            candles = int(input(colorText.BOLD + colorText.WARN +
                                    "\n[+] How many candles (TimeFrame) to look back for similarity? : " + colorText.END))
            return stockCode, candles
        except ValueError:
            input(colorText.BOLD + colorText.FAIL +
                "\n[+] Invalid Option Selected. Press Any Key to Continue..." + colorText.END)
            return None, None

    def getProgressbarStyle():
        bar = 'smooth'
        spinner = 'waves'
        if 'Windows' in platform.platform():
            bar = 'classic2'
            spinner = 'dots_recur'
        return bar, spinner

    def getNiftyModel(proxyServer=None):
        files = ['nifty_model_v3.h5', 'nifty_model_v3.pkl']
        urls = [
            f"https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/{files[0]}",
            f"https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/{files[1]}"
        ]
        if os.path.isfile(files[0]) and os.path.isfile(files[1]):
            file_age = (time.time() - os.path.getmtime(files[0]))/604800
            if file_age > 1:
                download = True
                os.remove(files[0])
                os.remove(files[1])
            else:
                download = False
        else:
            download = True
        if download:
            for file_url in urls:
                if proxyServer is not None:
                    resp = requests.get(file_url, stream=True, proxies={'https':proxyServer})
                else:
                    resp = requests.get(file_url, stream=True)
                if resp.status_code == 200:
                    print(colorText.BOLD + colorText.GREEN +
                            "[+] Downloading AI model (v3) for Nifty predictions, Please Wait.." + colorText.END)
                    try:
                        chunksize = 1024*1024*1
                        filesize = int(int(resp.headers.get('content-length'))/chunksize)
                        filesize = 1 if not filesize else filesize
                        bar, spinner = tools.getProgressbarStyle()
                        f = open(file_url.split('/')[-1], 'wb')
                        dl = 0
                        with alive_bar(filesize, bar=bar, spinner=spinner, manual=True) as progressbar:
                            for data in resp.iter_content(chunk_size=chunksize):
                                dl += 1
                                f.write(data)
                                progressbar(dl/filesize)
                                if dl >= filesize:
                                    progressbar(1.0)
                        f.close()
                    except Exception as e:
                        print("[!] Download Error - " + str(e))
            time.sleep(3)
        model = keras.models.load_model(files[0])
        pkl = joblib.load(files[1])
        return model, pkl

    def getSigmoidConfidence(x):
        out_min, out_max = 0, 100
        if x > 0.5:
            in_min = 0.50001
            in_max = 1
        else:
            in_min = 0
            in_max = 0.5
        return round(((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min),3)

    def alertSound(beeps=3, delay=0.2):
        for i in range(beeps):
            print('\a')
            sleep(delay)

    def isBacktesting(backtestDate):
        try:
            if datetime.date.today() != backtestDate:
                return True
            return False
        except:
            return False
        
    def calculateBacktestReport(data, backtestDict:dict):
        try:
            recent = data.head(1)['Close'].iloc[0]
            for key, val in backtestDict.copy().items():
                if val is not None:
                    try:
                        backtestDict[key] = str(round((backtestDict[key]-recent)/recent*100,1)) + "%"
                    except TypeError:
                        del backtestDict[key]
                        # backtestDict[key] = None
                        continue
                else:
                    del backtestDict[key]
        except:
            pass
        return backtestDict

def isDocker():
    if 'SCREENIPY_DOCKER' in os.environ:
        return True
    return False

def isGui():
    if 'SCREENIPY_GUI' in os.environ:
        return True
    return False