File size: 25,168 Bytes
9bf26a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import random
import streamlit as st
import streamlit.components.v1 as components
import requests
import os
import configparser
import urllib
import datetime
from num2words import num2words
from time import sleep
from pathlib import Path
from threading import Thread
from time import sleep
from math import floor
import classes.ConfigManager as ConfigManager
import classes.Utility as Utility
import classes.Fetcher as Fetcher
st.set_page_config(layout="wide", page_title="Screeni-py", page_icon="๐")
# Set protobuf to python to avoid TF error (This is a Slower infernece)
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
os.environ["TERM"] = "xterm"
import pandas as pd
from screenipy import main as screenipy_main
from classes.OtaUpdater import OTAUpdater
from classes.Changelog import VERSION
# Get system wide proxy for networking
try:
proxyServer = urllib.request.getproxies()['http']
except KeyError:
proxyServer = ""
isDevVersion, guiUpdateMessage = None, None
@st.cache_data(ttl='1h', show_spinner=False)
def check_updates():
isDevVersion, guiUpdateMessage = OTAUpdater.checkForUpdate(proxyServer, VERSION)
return isDevVersion, guiUpdateMessage
isDevVersion, guiUpdateMessage = check_updates()
execute_inputs = []
def show_df_as_result_table():
try:
df:pd.DataFrame = pd.read_pickle('last_screened_unformatted_results.pkl')
ac, cc, bc = st.columns([6,1,1])
ac.markdown(f'#### ๐ Found {len(df)} Results')
clear_cache_btn = cc.button(
label='Clear Cached Data',
use_container_width=True,
key=random.randint(1,999999999),
)
if clear_cache_btn:
os.system('rm stock_data_*.pkl')
st.toast('Stock Cache Deleted!', icon='๐๏ธ')
bc.download_button(
label="Download Results",
data=df.to_csv().encode('utf-8'),
file_name=f'screenipy_results_{datetime.datetime.now().strftime("%H:%M:%S_%d-%m-%Y")}.csv',
mime='text/csv',
type='secondary',
use_container_width=True
)
if type(execute_inputs[0]) == str or int(execute_inputs[0]) < 15:
df.index = df.index.map(lambda x: "https://in.tradingview.com/chart?symbol=NSE%3A" + x)
df.index = df.index.map(lambda x: f'<a href="{x}" target="_blank">{x.split("%3A")[-1]}</a>')
elif execute_inputs[0] == '16':
try:
fetcher = Fetcher.tools(configManager=ConfigManager.tools())
url_dict_reversed = {key.replace('^','').replace('.NS',''): value for key, value in fetcher.getAllNiftyIndices().items()}
url_dict_reversed = {v: k for k, v in url_dict_reversed.items()}
df.index = df.index.map(lambda x: "https://in.tradingview.com/chart?symbol=NSE%3A" + url_dict_reversed[x])
url_dict_reversed = {v: k for k, v in url_dict_reversed.items()}
df.index = df.index.map(lambda x: f'<a href="{x}" target="_blank">{url_dict_reversed[x.split("%3A")[-1]]}</a>')
except KeyError:
pass
else:
df.index = df.index.map(lambda x: "https://in.tradingview.com/chart?symbol=" + x)
df.index = df.index.map(lambda x: f'<a href="{x}" target="_blank">{x.split("=")[-1]}</a>')
df['Stock'] = df.index
stock_column = df.pop('Stock') # Remove 'Age' column and store it separately
df.insert(0, 'Stock', stock_column)
st.write(df.to_html(escape=False, index=False, index_names=False), unsafe_allow_html=True)
st.write(' ')
except FileNotFoundError:
st.error('Last Screened results are not available at the moment')
except Exception as e:
st.error('No Dataframe found for last_screened_results.pkl')
st.exception(e)
def on_config_change():
configManager = ConfigManager.tools()
configManager.period = period
configManager.daysToLookback = daystolookback
configManager.duration = duration
configManager.minLTP, configManager.maxLTP = minprice, maxprice
configManager.volumeRatio, configManager.consolidationPercentage = volumeratio, consolidationpercentage
configManager.shuffle = shuffle
configManager.cacheEnabled = cache
configManager.stageTwo = stagetwo
configManager.useEMA = useema
configManager.setConfig(configparser.ConfigParser(strict=False), default=True, showFileCreatedText=False)
st.toast('Configuration Saved', icon='๐พ')
def on_start_button_click():
global execute_inputs
if isDevVersion != None:
st.info(f'Received inputs (Debug only): {execute_inputs}')
def dummy_call():
try:
screenipy_main(execute_inputs=execute_inputs, isDevVersion=isDevVersion, backtestDate=backtestDate)
except StopIteration:
pass
except requests.exceptions.RequestException:
os.environ['SCREENIPY_REQ_ERROR'] = "TRUE"
if Utility.tools.isBacktesting(backtestDate=backtestDate):
st.write(f'Running in :red[**Backtesting Mode**] for *T = {str(backtestDate)}* (Y-M-D) : [Backtesting data is subjected to availability as per the API limits]')
st.write('Backtesting is :red[Not Supported] for Intraday timeframes')
t = Thread(target=dummy_call)
t.start()
st.markdown("""
<style>
.stProgress p {
font-size: 17px;
}
</style>
""", unsafe_allow_html=True)
progress_text = "๐ Preparing Screener, Please Wait! "
progress_bar = st.progress(0, text=progress_text)
os.environ['SCREENIPY_SCREEN_COUNTER'] = '0'
while int(os.environ.get('SCREENIPY_SCREEN_COUNTER')) < 100:
sleep(0.05)
cnt = int(os.environ.get('SCREENIPY_SCREEN_COUNTER'))
if cnt > 0:
progress_text = "๐ Screening stocks for you... "
progress_bar.progress(cnt, text=progress_text + f"**:red[{cnt}%]** Done")
if os.environ.get('SCREENIPY_REQ_ERROR') and "TRUE" in os.environ.get('SCREENIPY_REQ_ERROR'):
ac, bc = st.columns([2,1])
ac.error(':disappointed: Failed to reach Screeni-py server!')
ac.info('This issue is related with your Internet Service Provider (ISP) - Many **Jio** users faced this issue as the screeni-py data cache server appeared to be not reachable for them!\n\nPlease watch the YouTube video attached here to resolve this issue on your local system\n\nTry with another ISP/Network or go through this thread carefully to resolve this error: https://github.com/pranjal-joshi/Screeni-py/issues/164', icon='โน๏ธ')
bc.video('https://youtu.be/JADNADDNTmU')
del os.environ['SCREENIPY_REQ_ERROR']
break
t.join()
progress_bar.empty()
def nifty_predict(col):
with col.container():
with st.spinner('๐ฎ Taking a Look into the Future, Please wait...'):
import classes.Fetcher as Fetcher
import classes.Screener as Screener
configManager = ConfigManager.tools()
fetcher = Fetcher.tools(configManager)
screener = Screener.tools(configManager)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
prediction, trend, confidence, data_used = screener.getNiftyPrediction(
data=fetcher.fetchLatestNiftyDaily(proxyServer=proxyServer),
proxyServer=proxyServer
)
if 'BULLISH' in trend:
col.success(f'Market may Open **Gap Up** next day!\n\nProbability/Strength of Prediction = {confidence}%', icon='๐')
elif 'BEARISH' in trend:
col.error(f'Market may Open **Gap Down** next day!\n\nProbability/Strength of Prediction = {confidence}%', icon='๐')
else:
col.info("Couldn't determine the Trend. Try again later!")
col.warning('The AI prediction should be executed After 3 PM or Around the Closing hours as the Prediction Accuracy is based on the Closing price!\n\nThis is Just a Statistical Prediction and There are Chances of **False** Predictions!', icon='โ ๏ธ')
col.info("What's New in **v3**?\n\nMachine Learning model (v3) now uses Nifty, Crude and Gold Historical prices to Predict the Gap!", icon='๐')
col.markdown("**Following data is used to make above prediction:**")
col.dataframe(data_used)
def find_similar_stocks(stockCode:str, candles:int):
global execute_inputs
stockCode = stockCode.upper()
if ',' in stockCode or ' ' in stockCode or stockCode == '':
st.error('Invalid Character in Stock Name!', icon='๐พ')
return False
else:
execute_inputs = ['S', 0, stockCode, candles, 'N']
on_start_button_click()
st.toast('Screening Completed!', icon='๐')
sleep(2)
return True
def get_extra_inputs(tickerOption, executeOption, c_index=None, c_criteria=None, start_button=None):
global execute_inputs
if not tickerOption.isnumeric():
execute_inputs = [tickerOption, 0, 'N']
elif int(tickerOption) == 0 or tickerOption is None:
stock_codes:str = c_index.text_input('Enter Stock Code(s)', placeholder='SBIN, INFY, ITC')
execute_inputs = [tickerOption, executeOption, stock_codes.upper(), 'N']
return
elif int(executeOption) >= 0 and int(executeOption) < 4:
execute_inputs = [tickerOption, executeOption, 'N']
elif int(executeOption) == 4:
num_candles = c_criteria.text_input('The Volume should be lowest since last how many candles?', value='20')
if num_candles:
execute_inputs = [tickerOption, executeOption, num_candles, 'N']
else:
c_criteria.error("Number of Candles can't be left blank!")
elif int(executeOption) == 5:
min_rsi, max_rsi = c_criteria.columns((1,1))
min_rsi = min_rsi.number_input('Min RSI', min_value=0, max_value=100, value=50, step=1, format="%d")
max_rsi = max_rsi.number_input('Max RSI', min_value=0, max_value=100, value=70, step=1, format="%d")
if min_rsi >= max_rsi:
c_criteria.warning('WARNING: Min RSI โฅ Max RSI')
else:
execute_inputs = [tickerOption, executeOption, min_rsi, max_rsi, 'N']
elif int(executeOption) == 6:
c1, c2 = c_criteria.columns((7,2))
select_reversal = int(c1.selectbox('Select Type of Reversal',
options = [
'1 > Buy Signal (Bullish Reversal)',
'2 > Sell Signal (Bearish Reversal)',
'3 > Momentum Gainers (Rising Bullish Momentum)',
'4 > Reversal at Moving Average (Bullish Reversal)',
'5 > Volume Spread Analysis (Bullish VSA Reversal)',
'6 > Narrow Range (NRx) Reversal',
'7 > Lorentzian Classifier (Machine Learning based indicator)',
'8 > RSI Crossing with 9 SMA of RSI itself'
]
).split(' ')[0])
if select_reversal == 4:
ma_length = c2.number_input('MA Length', value=44, step=1, format="%d")
execute_inputs = [tickerOption, executeOption, select_reversal, ma_length, 'N']
elif select_reversal == 6:
range = c2.number_input('NR(x)',min_value=1, max_value=14, value=4, step=1, format="%d")
execute_inputs = [tickerOption, executeOption, select_reversal, range, 'N']
elif select_reversal == 7:
signal = int(c2.selectbox('Signal Type',
options = [
'1 > Any',
'2 > Buy',
'3 > Sell',
]
).split(' ')[0])
execute_inputs = [tickerOption, executeOption, select_reversal, signal, 'N']
else:
execute_inputs = [tickerOption, executeOption, select_reversal, 'N']
elif int(executeOption) == 7:
c1, c2 = c_criteria.columns((11,4))
select_pattern = int(c1.selectbox('Select Chart Pattern',
options = [
'1 > Bullish Inside Bar (Flag) Pattern',
'2 > Bearish Inside Bar (Flag) Pattern',
'3 > Confluence (50 & 200 MA/EMA)',
'4 > VCP (Experimental)',
'5 > Buying at Trendline (Ideal for Swing/Mid/Long term)',
]
).split(' ')[0])
if select_pattern == 1 or select_pattern == 2:
num_candles = c2.number_input('Lookback Candles', min_value=1, max_value=25, value=12, step=1, format="%d")
execute_inputs = [tickerOption, executeOption, select_pattern, int(num_candles), 'N']
elif select_pattern == 3:
confluence_percentage = c2.number_input('MA Confluence %', min_value=0.1, max_value=5.0, value=1.0, step=0.1, format="%1.1f")/100.0
execute_inputs = [tickerOption, executeOption, select_pattern, confluence_percentage, 'N']
else:
execute_inputs = [tickerOption, executeOption, select_pattern, 'N']
ac, bc = st.columns([13,1])
ac.title('๐ Screeni-py')
if guiUpdateMessage == "":
ac.subheader('Find Breakouts, Just in Time!')
if isDevVersion:
ac.warning(guiUpdateMessage, icon='โ ๏ธ')
elif guiUpdateMessage != "":
ac.success(guiUpdateMessage, icon='โ๏ธ')
telegram_url = "https://user-images.githubusercontent.com/6128978/217814499-7934edf6-fcc3-46d7-887e-7757c94e1632.png"
bc.divider()
bc.image(telegram_url, width=96)
tab_screen, tab_similar, tab_nifty, tab_config, tab_psc, tab_about = st.tabs(['Screen Stocks', 'Search Similar Stocks', 'Nifty-50 Gap Prediction', 'Configuration', 'Position Size Calculator', 'About'])
with tab_screen:
st.markdown("""
<style>
.block-container {
padding-top: 1rem;
padding-bottom: 0rem;
padding-left: 5rem;
padding-right: 5rem;
}
.stButton>button {
height: 70px;
}
.stDownloadButton>button {
height: 70px;
}
th {
text-align: left;
}
</style>
""",
unsafe_allow_html=True)
list_index = [
'All Stocks (Default)',
# 'W > Screen stocks from my own Watchlist',
# 'N > Nifty Prediction using Artifical Intelligence (Use for Gap-Up/Gap-Down/BTST/STBT)',
# 'E > Live Index Scan : 5 EMA for Intraday',
'0 > By Stock Names (NSE Stock Code)',
'1 > Nifty 50',
'2 > Nifty Next 50',
'3 > Nifty 100',
'4 > Nifty 200',
'5 > Nifty 500',
'6 > Nifty Smallcap 50',
'7 > Nifty Smallcap 100',
'8 > Nifty Smallcap 250',
'9 > Nifty Midcap 50',
'10 > Nifty Midcap 100',
'11 > Nifty Midcap 150',
'13 > Newly Listed (IPOs in last 2 Year)',
'14 > F&O Stocks Only',
'15 > US S&P 500',
'16 > Sectoral Indices (NSE)'
]
list_criteria = [
'0 > Full Screening (Shows Technical Parameters without Any Criteria)',
'1 > Screen stocks for Breakout or Consolidation',
'2 > Screen for the stocks with recent Breakout & Volume',
'3 > Screen for the Consolidating stocks',
'4 > Screen for the stocks with Lowest Volume in last N-days (Early Breakout Detection)',
'5 > Screen for the stocks with RSI',
'6 > Screen for the stocks showing Reversal Signals',
'7 > Screen for the stocks making Chart Patterns',
]
configManager = ConfigManager.tools()
configManager.getConfig(parser=ConfigManager.parser)
c_index, c_datepick, c_criteria, c_button_start = st.columns((2,1,4,1))
tickerOption = c_index.selectbox('Select Index', options=list_index).split(' ')
tickerOption = str(12 if '>' not in tickerOption else int(tickerOption[0]) if tickerOption[0].isnumeric() else str(tickerOption[0]))
picked_date = c_datepick.date_input(label='Screen/Backtest For', max_value=datetime.date.today(), value=datetime.date.today())
if picked_date:
backtestDate = picked_date
executeOption = str(c_criteria.selectbox('Select Screening Criteria', options=list_criteria).split(' ')[0])
start_button = c_button_start.button('Start Screening', type='primary', key='start_button', use_container_width=True)
get_extra_inputs(tickerOption=tickerOption, executeOption=executeOption, c_index=c_index, c_criteria=c_criteria, start_button=start_button)
if start_button:
on_start_button_click()
st.toast('Screening Completed!', icon='๐')
sleep(2)
with st.container():
show_df_as_result_table()
with tab_config:
configManager = ConfigManager.tools()
configManager.getConfig(parser=ConfigManager.parser)
ac, bc = st.columns([10,2])
ac.markdown('### ๐ง Screening Configuration')
bc.download_button(
label="Export Configuration",
data=Path('screenipy.ini').read_text(),
file_name='screenipy.ini',
mime='text/plain',
type='primary',
use_container_width=True
)
ac, bc, cc = st.columns([1,1,1])
period_options = ['15d','60d','300d','52wk','3y','5y','max']
duration_options = ['5m','15m','1h','4h','1d','1wk']
# period = ac.text_input('Period', value=f'{configManager.period}', placeholder='300d / 52wk ')
period = ac.selectbox('Period', options=period_options, index=period_options.index(configManager.period), placeholder='300d / 52wk')
daystolookback = bc.number_input('Lookback Period (Number of Candles)', value=configManager.daysToLookback, step=1)
# duration = cc.text_input('Candle Duration', value=f'{configManager.duration}', placeholder='15m / 1d / 1wk')
duration = cc.selectbox('Candle Duration', options=duration_options, index=duration_options.index(configManager.duration), placeholder='15m / 1d / 1wk')
if 'm' in duration or 'h' in duration:
cc.write('For Intraday duartion, Max :red[value of period <= 60d]')
ac, bc = st.columns([1,1])
minprice = ac.number_input('Minimum Price (Stocks below this will be ignored)', value=float(configManager.minLTP), step=0.1)
maxprice = bc.number_input('Maximum Price (Stocks above this will be ignored)', value=float(configManager.maxLTP), step=0.1)
ac, bc = st.columns([1,1])
volumeratio = ac.number_input('Volume multiplier for Breakout confirmation', value=float(configManager.volumeRatio), step=0.1)
consolidationpercentage = bc.number_input('Range consolidation (%)', value=int(configManager.consolidationPercentage), step=1)
ac, bc, cc, dc = st.columns([1,1,1,1])
shuffle = ac.checkbox('Shuffle stocks while screening', value=configManager.shuffleEnabled, disabled=True)
cache = bc.checkbox('Enable caching of stock data after market hours', value=configManager.cacheEnabled, disabled=True)
stagetwo = cc.checkbox('Screen only for [Stage-2](https://www.investopedia.com/articles/investing/070715/trading-stage-analysis.asp#:~:text=placed%20stops.-,Stage%202%3A%20Uptrends,-Image%20by%20Sabrina) stocks', value=configManager.stageTwo)
useema = dc.checkbox('Use EMA instead of SMA', value=configManager.useEMA)
save_button = st.button('Save Configuration', on_click=on_config_change, type='primary', use_container_width=True)
st.markdown('### Import Your Own Configuration:')
uploaded_file = st.file_uploader('Upload screenipy.ini file')
if uploaded_file is not None:
bytes_data = uploaded_file.getvalue()
with open('screenipy.ini', 'wb') as f:
f.write(bytes_data)
st.toast('Configuration Imported', icon='โ๏ธ')
with tab_nifty:
ac, bc = st.columns([9,1])
ac.subheader('๐ง AI-based prediction for Next Day Nifty-50 Gap Up / Gap Down')
bc.button('**Predict**', type='primary', on_click=nifty_predict, args=(ac,), use_container_width=True)
with tab_similar:
st.subheader('๐ต๐ป Find Stocks forming Similar Chart Patterns')
ac, bc, cc = st.columns([4,2,1])
stockCode = ac.text_input('Enter Stock Name and Press Enter', placeholder='HDFCBANK')
candles = bc.number_input('Lookback Period (No. of Candles)', min_value=1, step=1, value=int(configManager.daysToLookback))
similar_search_button = cc.button('**Search**', type='primary', use_container_width=True)
if similar_search_button:
result = find_similar_stocks(stockCode, candles)
if result:
with st.container():
show_df_as_result_table()
st.write('Click [**here**](https://medium.com/@joshi.pranjal5/spot-your-favourite-trading-setups-using-vector-databases-1651d747fbf0) to know How this Works? ๐ค')
with tab_about:
from classes.Changelog import VERSION, changelog
st.success(f'Screeni-py v{VERSION}', icon='๐')
ac, bc = st.columns([2,1])
ac.info("""
๐จ๐ปโ๐ป Developed and Maintained by: Pranjal Joshi
๐ Home Page: https://github.com/pranjal-joshi/Screeni-py
โ ๏ธ Read/Post Issues here: https://github.com/pranjal-joshi/Screeni-py/issues
๐ฃ Join Community Discussions: https://github.com/pranjal-joshi/Screeni-py/discussions
โฌ๏ธ Download latest software from https://github.com/pranjal-joshi/Screeni-py/releases/latest
๐ฌ Join Telegram Group for discussion: https://t.me/+0Tzy08mR0do0MzNl
๐ฌ YouTube Playlist: Watch [**Here**](https://youtube.com/playlist?list=PLsGnKKT_974J3UVS8M6bxqePfWLeuMsBi&si=b6JNMf03IbA_SsXs) [](https://www.youtube.com/@PranjalJoshi)
""")
bc.write('<iframe width="445" height="295" src="https://www.youtube.com/embed/videoseries?si=aKXpyKKgwCcWIjhW&list=PLsGnKKT_974J3UVS8M6bxqePfWLeuMsBi" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>', unsafe_allow_html=True)
st.warning("ChangeLog:\n " + changelog[40:-3], icon='โ๏ธ')
with tab_psc:
ac, oc = st.columns([1, 1])
ac, bc = ac.columns([4, 1])
ac.subheader('๐ธ Position Size Calculator')
calculate_qty_btn = bc.button('**Calculate Qty**', type='primary', use_container_width=True)
ac, bc = st.columns([1, 1])
capital = ac.number_input(label='Capital Size', min_value=0, value=100000, help='Total Amount used for Trading/Investing')
if capital:
in_words = num2words(capital, lang='en_IN').title()
bc.write(f"<p style='margin-top:35px; font-weight: bold;'>Your Capital is Rs. {in_words}</p>", unsafe_allow_html=True)
risk = ac.number_input(label="% Risk on Capital for this trade", min_value=0.0, max_value=10.0, step=0.1, value=0.5, help='How many percentage of your total capital you want to risk if your Stoploss hits? If you want a max loss of 1000 for an account value of 100,000 then your risk is 1%. It is not advised to take Risk more than 5% per trade! Think about your maximum loss before you trade!')
if risk:
risk_rs = capital * (risk/100.0)
in_words = num2words(risk_rs, lang='en_IN').title()
bc.write(f"<p style='margin-top:40px; font-weight: bold;'>Your Risk for this trade is Rs. {in_words}</p>", unsafe_allow_html=True)
ac.divider()
sl = ac.number_input(label="Stoploss in points", min_value=0.0, step=0.1, help='Stoploss in Points or Rupees calculated by you by analyzing the chart.')
if sl > 0:
in_words = num2words(sl, lang='en_IN').title()
bc.write(f"<p style='margin-top:105px;'>Your SL is {in_words} Rs. per share.</p>", unsafe_allow_html=True)
ac.write('<center><h5>OR</h5></center>', unsafe_allow_html=True)
a1, a2 = ac.columns([1, 1])
price = a1.number_input(label="Entry Price", min_value=0.0, help='Entry price for Long/Short position')
percentage_sl = a2.number_input(label="% SL", min_value=0.0, max_value=100.0, value=5.0, help='Stoploss in %')
if sl == 0 and (price > 0 and percentage_sl > 0):
actual_sl = round(price * (percentage_sl / 100),2)
in_words = num2words(actual_sl, lang='en_IN').title()
bc.write(f"<p style='margin-top:230px;'>Your SL is Rs. {actual_sl} per share</p>", unsafe_allow_html=True)
if calculate_qty_btn:
if sl > 0:
qty = floor(risk_rs / sl)
oc.metric(label='Quantity', value=qty, delta=f'Max Loss: {(-1 * qty * sl)}', delta_color='inverse', help='Trade this Quantity to prevent excessive unplanned losses')
elif price > 0 and percentage_sl > 0:
qty = floor(risk_rs / actual_sl)
oc.metric(label='Quantity', value=qty, delta=f'Max Loss: {(-1 * qty * actual_sl)}', delta_color='inverse', help='Trade this Quantity to prevent excessive unplanned losses')
marquee_html = '''
<!DOCTYPE html>
<html>
<head>
<style>
.sampleMarquee {
color: #f63366;
font-family: 'Ubuntu Mono', monospace;
background-color: #ffffff;
font-size: 18px;
line-height: 30px;
padding: px;
font-weight: bold;
}
</style>
</head>
<body>
<marquee class="sampleMarquee" direction="left" scrollamount="7" behavior="scroll">This tool should be used only for Analysis/Study purposes. We do NOT provide any Buy/Sell advice for any Securities. Authors of this tool will not be held liable for any losses. Understand the Risks subjected with Markets before Investing.</marquee>
</body>
</html>
'''
components.html(marquee_html) |