Stockcxx / src /classes /Screener.py
jarvisx17's picture
Upload 46 files
9bf26a6 verified
'''
* Project : Screenipy
* Author : Pranjal Joshi
* Created : 28/04/2021
* Description : Class for analyzing and validating stocks
'''
import sys
import math
import numpy as np
import pandas as pd
import joblib
import keras
import time
import classes.Utility as Utility
from copy import copy
from advanced_ta import LorentzianClassification
from classes.Utility import isGui
from sklearn.preprocessing import StandardScaler
from scipy.signal import argrelextrema
from scipy.stats import linregress
from classes.ColorText import colorText
from classes.SuppressOutput import SuppressOutput
from classes.ScreenipyTA import ScreenerTA
try:
import chromadb
CHROMA_AVAILABLE = True
except:
CHROMA_AVAILABLE = False
# Exception for newly listed stocks with candle nos < daysToLookback
class StockDataNotAdequate(Exception):
pass
# Exception for only downloading stock data and not screening
class DownloadDataOnly(Exception):
pass
# Exception for stocks which are not newly listed when screening only for Newly Listed
class NotNewlyListed(Exception):
pass
# This Class contains methods for stock analysis and screening validation
class tools:
def __init__(self, configManager) -> None:
self.configManager = configManager
# Private method to find candle type
# True = Bullish, False = Bearish
def getCandleType(self, dailyData):
return bool(dailyData['Close'].iloc[0] >= dailyData['Open'].iloc[0])
# Preprocess the acquired data
def preprocessData(self, data, daysToLookback=None):
if daysToLookback is None:
daysToLookback = self.configManager.daysToLookback
if self.configManager.useEMA:
sma = ScreenerTA.EMA(data['Close'],timeperiod=50)
lma = ScreenerTA.EMA(data['Close'],timeperiod=200)
data.insert(6,'SMA',sma)
data.insert(7,'LMA',lma)
else:
sma = data.rolling(window=50).mean()
lma = data.rolling(window=200).mean()
data.insert(6,'SMA',sma['Close'])
data.insert(7,'LMA',lma['Close'])
vol = data.rolling(window=20).mean()
rsi = ScreenerTA.RSI(data['Close'], timeperiod=14)
data.insert(8,'VolMA',vol['Volume'])
data.insert(9,'RSI',rsi)
data = data[::-1] # Reverse the dataframe
# data = data.fillna(0)
# data = data.replace([np.inf, -np.inf], 0)
fullData = data
trimmedData = data.head(daysToLookback)
return (fullData, trimmedData)
# Validate LTP within limits
def validateLTP(self, data, screenDict, saveDict, minLTP=None, maxLTP=None):
if minLTP is None:
minLTP = self.configManager.minLTP
if maxLTP is None:
maxLTP = self.configManager.maxLTP
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
recent = data.head(1)
pct_change = (data[::-1]['Close'].pct_change(fill_method=None) * 100).iloc[-1]
if pct_change > 0.2:
pct_change = colorText.GREEN + (" (%.1f%%)" % pct_change) + colorText.END
elif pct_change < -0.2:
pct_change = colorText.FAIL + (" (%.1f%%)" % pct_change) + colorText.END
else:
pct_change = colorText.WARN + (" (%.1f%%)" % pct_change) + colorText.END
ltp = round(recent['Close'].iloc[0],2)
saveDict['LTP'] = str(ltp)
verifyStageTwo = True
if self.configManager.stageTwo and len(data) > 250:
yearlyLow = data.head(250).min()['Close']
yearlyHigh = data.head(250).max()['Close']
if ltp < (2 * yearlyLow) or ltp < (0.75 * yearlyHigh):
verifyStageTwo = False
if(ltp >= minLTP and ltp <= maxLTP and verifyStageTwo):
screenDict['LTP'] = colorText.GREEN + ("%.2f" % ltp) + pct_change + colorText.END
return True
screenDict['LTP'] = colorText.FAIL + ("%.2f" % ltp) + pct_change + colorText.END
return False
# Validate if share prices are consolidating
def validateConsolidation(self, data, screenDict, saveDict, percentage=10):
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
hc = data.describe()['Close']['max']
lc = data.describe()['Close']['min']
if ((hc - lc) <= (hc*percentage/100) and (hc - lc != 0)):
screenDict['Consolidating'] = colorText.BOLD + colorText.GREEN + "Range = " + str(round((abs((hc-lc)/hc)*100),1))+"%" + colorText.END
else:
screenDict['Consolidating'] = colorText.BOLD + colorText.FAIL + "Range = " + str(round((abs((hc-lc)/hc)*100),1)) + "%" + colorText.END
saveDict['Consolidating'] = str(round((abs((hc-lc)/hc)*100),1))+"%"
return round((abs((hc-lc)/hc)*100),1)
# Validate Moving averages and look for buy/sell signals
def validateMovingAverages(self, data, screenDict, saveDict, maRange=2.5):
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
recent = data.head(1)
if(recent['SMA'].iloc[0] > recent['LMA'].iloc[0] and recent['Close'].iloc[0] > recent['SMA'].iloc[0]):
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + 'Bullish' + colorText.END
saveDict['MA-Signal'] = 'Bullish'
elif(recent['SMA'].iloc[0] < recent['LMA'].iloc[0]):
screenDict['MA-Signal'] = colorText.BOLD + colorText.FAIL + 'Bearish' + colorText.END
saveDict['MA-Signal'] = 'Bearish'
elif(recent['SMA'].iloc[0] == 0):
screenDict['MA-Signal'] = colorText.BOLD + colorText.WARN + 'Unknown' + colorText.END
saveDict['MA-Signal'] = 'Unknown'
else:
screenDict['MA-Signal'] = colorText.BOLD + colorText.WARN + 'Neutral' + colorText.END
saveDict['MA-Signal'] = 'Neutral'
smaDev = data['SMA'].iloc[0] * maRange / 100
lmaDev = data['LMA'].iloc[0] * maRange / 100
open, high, low, close, sma, lma = data['Open'].iloc[0], data['High'].iloc[0], data['Low'].iloc[0], data['Close'].iloc[0], data['SMA'].iloc[0], data['LMA'].iloc[0]
maReversal = 0
# Taking Support 50
if close > sma and low <= (sma + smaDev):
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + '50MA-Support' + colorText.END
saveDict['MA-Signal'] = '50MA-Support'
maReversal = 1
# Validating Resistance 50
elif close < sma and high >= (sma - smaDev):
screenDict['MA-Signal'] = colorText.BOLD + colorText.FAIL + '50MA-Resist' + colorText.END
saveDict['MA-Signal'] = '50MA-Resist'
maReversal = -1
# Taking Support 200
elif close > lma and low <= (lma + lmaDev):
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + '200MA-Support' + colorText.END
saveDict['MA-Signal'] = '200MA-Support'
maReversal = 1
# Validating Resistance 200
elif close < lma and high >= (lma - lmaDev):
screenDict['MA-Signal'] = colorText.BOLD + colorText.FAIL + '200MA-Resist' + colorText.END
saveDict['MA-Signal'] = '200MA-Resist'
maReversal = -1
# For a Bullish Candle
if self.getCandleType(data):
# Crossing up 50
if open < sma and close > sma:
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + 'BullCross-50MA' + colorText.END
saveDict['MA-Signal'] = 'BullCross-50MA'
maReversal = 1
# Crossing up 200
elif open < lma and close > lma:
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + 'BullCross-200MA' + colorText.END
saveDict['MA-Signal'] = 'BullCross-200MA'
maReversal = 1
# For a Bearish Candle
elif not self.getCandleType(data):
# Crossing down 50
if open > sma and close < sma:
screenDict['MA-Signal'] = colorText.BOLD + colorText.FAIL + 'BearCross-50MA' + colorText.END
saveDict['MA-Signal'] = 'BearCross-50MA'
maReversal = -1
# Crossing up 200
elif open > lma and close < lma:
screenDict['MA-Signal'] = colorText.BOLD + colorText.FAIL + 'BearCross-200MA' + colorText.END
saveDict['MA-Signal'] = 'BearCross-200MA'
maReversal = -1
return maReversal
# Validate if volume of last day is higher than avg
def validateVolume(self, data, screenDict, saveDict, volumeRatio=2.5):
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
recent = data.head(1)
if recent['VolMA'].iloc[0] == 0: # Handles Divide by 0 warning
saveDict['Volume'] = "Unknown"
screenDict['Volume'] = colorText.BOLD + colorText.WARN + "Unknown" + colorText.END
return True
ratio = round(recent['Volume'].iloc[0]/recent['VolMA'].iloc[0],2)
saveDict['Volume'] = str(ratio)+"x"
if(ratio >= volumeRatio and ratio != np.nan and (not math.isinf(ratio)) and (ratio != 20)):
screenDict['Volume'] = colorText.BOLD + colorText.GREEN + str(ratio) + "x" + colorText.END
return True
screenDict['Volume'] = colorText.BOLD + colorText.FAIL + str(ratio) + "x" + colorText.END
return False
# Find accurate breakout value
def findBreakout(self, data, screenDict, saveDict, daysToLookback):
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
recent = data.head(1)
data = data[1:]
hs = round(data.describe()['High']['max'],2)
hc = round(data.describe()['Close']['max'],2)
rc = round(recent['Close'].iloc[0],2)
if np.isnan(hc) or np.isnan(hs):
saveDict['Breaking-Out'] = 'BO: Unknown'
screenDict['Breaking-Out'] = colorText.BOLD + colorText.WARN + 'BO: Unknown' + colorText.END
return False
if hs > hc:
if ((hs - hc) <= (hs*2/100)):
saveDict['Breaking-Out'] = str(hc)
if rc >= hc:
screenDict['Breaking-Out'] = colorText.BOLD + colorText.GREEN + "BO: " + str(hc) + " R: " + str(hs) + colorText.END
return True and self.getCandleType(recent)
screenDict['Breaking-Out'] = colorText.BOLD + colorText.FAIL + "BO: " + str(hc) + " R: " + str(hs) + colorText.END
return False
noOfHigherShadows = len(data[data.High > hc])
if(daysToLookback/noOfHigherShadows <= 3):
saveDict['Breaking-Out'] = str(hs)
if rc >= hs:
screenDict['Breaking-Out'] = colorText.BOLD + colorText.GREEN + "BO: " + str(hs) + colorText.END
return True and self.getCandleType(recent)
screenDict['Breaking-Out'] = colorText.BOLD + colorText.FAIL + "BO: " + str(hs) + colorText.END
return False
saveDict['Breaking-Out'] = str(hc) + ", " + str(hs)
if rc >= hc:
screenDict['Breaking-Out'] = colorText.BOLD + colorText.GREEN + "BO: " + str(hc) + " R: " + str(hs) + colorText.END
return True and self.getCandleType(recent)
screenDict['Breaking-Out'] = colorText.BOLD + colorText.FAIL + "BO: " + str(hc) + " R: " + str(hs) + colorText.END
return False
else:
saveDict['Breaking-Out'] = str(hc)
if rc >= hc:
screenDict['Breaking-Out'] = colorText.BOLD + colorText.GREEN + "BO: " + str(hc) + colorText.END
return True and self.getCandleType(recent)
screenDict['Breaking-Out'] = colorText.BOLD + colorText.FAIL + "BO: " + str(hc) + colorText.END
return False
# Validate 'Inside Bar' structure for recent days
def validateInsideBar(self, data, screenDict, saveDict, chartPattern=1, daysToLookback=5):
orgData = data
daysToLookback = int(daysToLookback)
for i in range(daysToLookback, round(daysToLookback*0.5)-1, -1):
if i == 2:
return 0 # Exit if only last 2 candles are left
if chartPattern == 1:
if "Up" in saveDict['Trend'] and ("Bull" in saveDict['MA-Signal'] or "Support" in saveDict['MA-Signal']):
data = orgData.head(i)
refCandle = data.tail(1)
if (len(data.High[data.High > refCandle.High.item()]) == 0) and (len(data.Low[data.Low < refCandle.Low.item()]) == 0) and (len(data.Open[data.Open > refCandle.High.item()]) == 0) and (len(data.Close[data.Close < refCandle.Low.item()]) == 0):
screenDict['Pattern'] = colorText.BOLD + colorText.WARN + ("Inside Bar (%d)" % i) + colorText.END
saveDict['Pattern'] = "Inside Bar (%d)" % i
return i
else:
return 0
else:
if "Down" in saveDict['Trend'] and ("Bear" in saveDict['MA-Signal'] or "Resist" in saveDict['MA-Signal']):
data = orgData.head(i)
refCandle = data.tail(1)
if (len(data.High[data.High > refCandle.High.item()]) == 0) and (len(data.Low[data.Low < refCandle.Low.item()]) == 0) and (len(data.Open[data.Open > refCandle.High.item()]) == 0) and (len(data.Close[data.Close < refCandle.Low.item()]) == 0):
screenDict['Pattern'] = colorText.BOLD + colorText.WARN + ("Inside Bar (%d)" % i) + colorText.END
saveDict['Pattern'] = "Inside Bar (%d)" % i
return i
else:
return 0
return 0
# Validate if recent volume is lowest of last 'N' Days
def validateLowestVolume(self, data, daysForLowestVolume):
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
if daysForLowestVolume is None:
daysForLowestVolume = 30
data = data.head(daysForLowestVolume)
recent = data.head(1)
if((recent['Volume'].iloc[0] <= data.describe()['Volume']['min']) and recent['Volume'].iloc[0] != np.nan):
return True
return False
# validate if RSI is within given range
def validateRSI(self, data, screenDict, saveDict, minRSI, maxRSI):
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
rsi = int(data.head(1)['RSI'].iloc[0])
saveDict['RSI'] = rsi
if(rsi >= minRSI and rsi <= maxRSI) and (rsi <= 70 and rsi >= 30):
screenDict['RSI'] = colorText.BOLD + colorText.GREEN + str(rsi) + colorText.END
return True
screenDict['RSI'] = colorText.BOLD + colorText.FAIL + str(rsi) + colorText.END
return False
# Find out trend for days to lookback
def findTrend(self, data, screenDict, saveDict, daysToLookback=None,stockName=""):
if daysToLookback is None:
daysToLookback = self.configManager.daysToLookback
data = data.head(daysToLookback)
data = data[::-1]
data = data.set_index(np.arange(len(data)))
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
with SuppressOutput(suppress_stdout=True,suppress_stderr=True):
data['tops'] = data['Close'].iloc[list(argrelextrema(np.array(data['Close']), np.greater_equal, order=1)[0])]
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
try:
try:
if len(data) < daysToLookback:
raise StockDataNotAdequate
slope,c = np.polyfit(data.index[data.tops > 0], data['tops'][data.tops > 0], 1)
except Exception as e:
slope,c = 0,0
angle = np.rad2deg(np.arctan(slope))
if (angle == 0):
screenDict['Trend'] = colorText.BOLD + colorText.WARN + "Unknown" + colorText.END
saveDict['Trend'] = 'Unknown'
elif (angle <= 30 and angle >= -30):
screenDict['Trend'] = colorText.BOLD + colorText.WARN + "Sideways" + colorText.END
saveDict['Trend'] = 'Sideways'
elif (angle >= 30 and angle < 61):
screenDict['Trend'] = colorText.BOLD + colorText.GREEN + "Weak Up" + colorText.END
saveDict['Trend'] = 'Weak Up'
elif angle >= 60:
screenDict['Trend'] = colorText.BOLD + colorText.GREEN + "Strong Up" + colorText.END
saveDict['Trend'] = 'Strong Up'
elif (angle <= -30 and angle > -61):
screenDict['Trend'] = colorText.BOLD + colorText.FAIL + "Weak Down" + colorText.END
saveDict['Trend'] = 'Weak Down'
elif angle <= -60:
screenDict['Trend'] = colorText.BOLD + colorText.FAIL + "Strong Down" + colorText.END
saveDict['Trend'] = 'Strong Down'
except np.linalg.LinAlgError:
screenDict['Trend'] = colorText.BOLD + colorText.WARN + "Unknown" + colorText.END
saveDict['Trend'] = 'Unknown'
return saveDict['Trend']
# Find if stock is validating volume spread analysis
def validateVolumeSpreadAnalysis(self, data, screenDict, saveDict):
try:
data = data.head(2)
try:
# Check for previous RED candles
# Current candle = 0th, Previous Candle = 1st for following logic
if data.iloc[1]['Open'] >= data.iloc[1]['Close']:
spread1 = abs(data.iloc[1]['Open'] - data.iloc[1]['Close'])
spread0 = abs(data.iloc[0]['Open'] - data.iloc[0]['Close'])
lower_wick_spread0 = max(data.iloc[0]['Open'], data.iloc[0]['Close']) - data.iloc[0]['Low']
vol1 = data.iloc[1]['Volume']
vol0 = data.iloc[0]['Volume']
if spread0 > spread1 and vol0 < vol1 and data.iloc[0]['Volume'] < data.iloc[0]['VolMA'] and data.iloc[0]['Close'] <= data.iloc[1]['Open'] and spread0 < lower_wick_spread0 and data.iloc[0]['Volume'] <= int(data.iloc[1]['Volume']*0.75):
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + 'Supply Drought' + colorText.END
saveDict['Pattern'] = 'Supply Drought'
return True
if spread0 < spread1 and vol0 > vol1 and data.iloc[0]['Volume'] > data.iloc[0]['VolMA'] and data.iloc[0]['Close'] <= data.iloc[1]['Open']:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + 'Demand Rise' + colorText.END
saveDict['Pattern'] = 'Demand Rise'
return True
except IndexError:
pass
return False
except:
import traceback
traceback.print_exc()
return False
# Find if stock gaining bullish momentum
def validateMomentum(self, data, screenDict, saveDict):
try:
data = data.head(3)
for row in data.iterrows():
# All 3 candles should be Green and NOT Circuits
if row[1]['Close'].item() <= row[1]['Open'].item():
return False
openDesc = data.sort_values(by=['Open'], ascending=False)
closeDesc = data.sort_values(by=['Close'], ascending=False)
volDesc = data.sort_values(by=['Volume'], ascending=False)
try:
if data.equals(openDesc) and data.equals(closeDesc) and data.equals(volDesc):
if (data['Open'].iloc[0].item() >= data['Close'].iloc[1].item()) and (data['Open'].iloc[1].item() >= data['Close'].iloc[2].item()):
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + 'Momentum Gainer' + colorText.END
saveDict['Pattern'] = 'Momentum Gainer'
return True
except IndexError:
pass
return False
except Exception as e:
import traceback
traceback.print_exc()
return False
# Find stock reversing at given MA
def findReversalMA(self, data, screenDict, saveDict, maLength, percentage=0.015):
if maLength is None:
maLength = 20
data = data[::-1]
if self.configManager.useEMA:
maRev = ScreenerTA.EMA(data['Close'],timeperiod=maLength)
else:
maRev = ScreenerTA.MA(data['Close'],timeperiod=maLength)
data.insert(10,'maRev',maRev)
data = data[::-1].head(3)
if data.equals(data[(data.Close >= (data.maRev - (data.maRev*percentage))) & (data.Close <= (data.maRev + (data.maRev*percentage)))]) and data.head(1)['Close'].iloc[0] >= data.head(1)['maRev'].iloc[0]:
if self.configManager.stageTwo:
if data.head(1)['maRev'].iloc[0] < data.head(2)['maRev'].iloc[1] or data.head(2)['maRev'].iloc[1] < data.head(3)['maRev'].iloc[2] or data.head(1)['SMA'].iloc[0] < data.head(1)['LMA'].iloc[0]:
return False
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + f'Reversal-{maLength}MA' + colorText.END
saveDict['MA-Signal'] = f'Reversal-{maLength}MA'
return True
return False
# Find stock showing RSI crossing with RSI 9 SMA
def findRSICrossingMA(self, data, screenDict, saveDict, maLength=9):
data = data[::-1]
maRsi = ScreenerTA.MA(data['RSI'], timeperiod=maLength)
data.insert(10,'maRsi',maRsi)
data = data[::-1].head(3)
if data['maRsi'].iloc[0] <= data['RSI'].iloc[0] and data['maRsi'].iloc[1] > data['RSI'].iloc[1]:
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + f'RSI-MA-Buy' + colorText.END
saveDict['MA-Signal'] = f'RSI-MA-Buy'
return True
elif data['maRsi'].iloc[0] >= data['RSI'].iloc[0] and data['maRsi'].iloc[1] < data['RSI'].iloc[1]:
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + f'RSI-MA-Sell' + colorText.END
saveDict['MA-Signal'] = f'RSI-MA-Sell'
return True
return False
# Find IPO base
def validateIpoBase(self, stock, data, screenDict, saveDict, percentage=0.3):
listingPrice = data[::-1].head(1)['Open'].iloc[0]
currentPrice = data.head(1)['Close'].iloc[0]
ATH = data.describe()['High']['max']
if ATH > (listingPrice + (listingPrice * percentage)):
return False
away = round(((currentPrice - listingPrice)/listingPrice)*100, 1)
if((listingPrice - (listingPrice * percentage)) <= currentPrice <= (listingPrice + (listingPrice * percentage))):
if away > 0:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + f'IPO Base ({away} %)' + colorText.END
else:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + 'IPO Base ' + colorText.FAIL + f'({away} %)' + colorText.END
saveDict['Pattern'] = f'IPO Base ({away} %)'
return True
return False
# Find Conflucence
def validateConfluence(self, stock, data, screenDict, saveDict, percentage=0.1):
recent = data.head(1)
if(abs(recent['SMA'].iloc[0] - recent['LMA'].iloc[0]) <= (recent['SMA'].iloc[0] * percentage)):
difference = round(abs(recent['SMA'].iloc[0] - recent['LMA'].iloc[0])/recent['Close'].iloc[0] * 100,2)
if recent['SMA'].iloc[0] >= recent['LMA'].iloc[0]:
screenDict['MA-Signal'] = colorText.BOLD + colorText.GREEN + f'Confluence ({difference}%)' + colorText.END
saveDict['MA-Signal'] = f'Confluence ({difference}%)'
else:
screenDict['MA-Signal'] = colorText.BOLD + colorText.FAIL + f'Confluence ({difference}%)' + colorText.END
saveDict['MA-Signal'] = f'Confluence ({difference}%)'
return True
return False
# Find if stock is newly listed
def validateNewlyListed(self, data, daysToLookback):
daysToLookback = int(daysToLookback[:-1])
recent = data.head(1)
if len(data) < daysToLookback and (recent['Close'].iloc[0] != np.nan and recent['Close'].iloc[0] > 0):
return True
return False
# Find stocks approching to long term trendlines
def findTrendlines(self, data, screenDict, saveDict, percentage = 0.05):
period = int(''.join(c for c in self.configManager.period if c.isdigit()))
if len(data) < period:
return False
data = data[::-1]
data['Number'] = np.arange(len(data))+1
data_high = data.copy()
data_low = data.copy()
points = 30
''' Ignoring the Resitance for long-term purpose
while len(data_high) > points:
slope, intercept, r_value, p_value, std_err = linregress(x=data_high['Number'], y=data_high['High'])
data_high = data_high.loc[data_high['High'] > slope * data_high['Number'] + intercept]
slope, intercept, r_value, p_value, std_err = linregress(x=data_high['Number'], y=data_high['Close'])
data['Resistance'] = slope * data['Number'] + intercept
'''
while len(data_low) > points:
slope, intercept, r_value, p_value, std_err = linregress(x=data_low['Number'], y=data_low['Low'])
data_low = data_low.loc[data_low['Low'] < slope * data_low['Number'] + intercept]
slope, intercept, r_value, p_value, std_err = linregress(x=data_low['Number'], y=data_low['Close'])
data['Support'] = slope * data['Number'] + intercept
now = data.tail(1)
limit_upper = now['Support'].iloc[0].item() + (now['Support'].iloc[0].item() * percentage)
limit_lower = now['Support'].iloc[0].item() - (now['Support'].iloc[0].item() * percentage)
if limit_lower < now['Close'].iloc[0].item() < limit_upper and slope > 0.15:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + 'Trendline-Support' + colorText.END
saveDict['Pattern'] = 'Trendline-Support'
return True
''' Plots for debugging
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots(figsize=(15,10))
color = 'tab:green'
xdate = [x.date() for x in data.index]
ax1.set_xlabel('Date', color=color)
ax1.plot(xdate, data.Close, label="close", color=color)
ax1.tick_params(axis='x', labelcolor=color)
ax2 = ax1.twiny() # ax2 and ax1 will have common y axis and different x axis, twiny
ax2.plot(data.Number, data.Resistance, label="Res")
ax2.plot(data.Number, data.Support, label="Sup")
plt.legend()
plt.grid()
plt.show()
'''
return False
# Find NRx range for Reversal
def validateNarrowRange(self, data, screenDict, saveDict, nr=4):
if Utility.tools.isTradingTime():
rangeData = data.head(nr+1)[1:]
now_candle = data.head(1)
rangeData['Range'] = abs(rangeData['Close'] - rangeData['Open'])
recent = rangeData.head(1)
if recent['Range'].iloc[0] == rangeData.describe()['Range']['min']:
if self.getCandleType(recent) and now_candle['Close'].iloc[0] >= recent['Close'].iloc[0]:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + f'Buy-NR{nr}' + colorText.END
saveDict['Pattern'] = f'Buy-NR{nr}'
return True
elif not self.getCandleType(recent) and now_candle['Close'].iloc[0] <= recent['Close'].iloc[0]:
screenDict['Pattern'] = colorText.BOLD + colorText.FAIL + f'Sell-NR{nr}' + colorText.END
saveDict['Pattern'] = f'Sell-NR{nr}'
return True
return False
else:
rangeData = data.head(nr)
rangeData['Range'] = abs(rangeData['Close'] - rangeData['Open'])
recent = rangeData.head(1)
if recent['Range'].iloc[0] == rangeData.describe()['Range']['min']:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + f'NR{nr}' + colorText.END
saveDict['Pattern'] = f'NR{nr}'
return True
return False
# Validate Lorentzian Classification signal
def validateLorentzian(self, data, screenDict, saveDict, lookFor=1):
# lookFor: 1-Any, 2-Buy, 3-Sell
data = data[::-1] # Reverse the dataframe
data = data.rename(columns={'Open':'open', 'Close':'close', 'High':'high', 'Low':'low', 'Volume':'volume'})
lc = LorentzianClassification(data=data)
if lc.df.iloc[-1]['isNewBuySignal']:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + f'Lorentzian-Buy' + colorText.END
saveDict['Pattern'] = f'Lorentzian-Buy'
if lookFor != 3:
return True
elif lc.df.iloc[-1]['isNewSellSignal']:
screenDict['Pattern'] = colorText.BOLD + colorText.FAIL + f'Lorentzian-Sell' + colorText.END
saveDict['Pattern'] = f'Lorentzian-Sell'
if lookFor != 2:
return True
return False
# Validate VPC
def validateVCP(self, data, screenDict, saveDict, stockName=None, window=3, percentageFromTop=3):
try:
percentageFromTop /= 100
data.reset_index(inplace=True)
data.rename(columns={'index':'Date'}, inplace=True)
data['tops'] = data['High'].iloc[list(argrelextrema(np.array(data['High']), np.greater_equal, order=window)[0])].head(4)
data['bots'] = data['Low'].iloc[list(argrelextrema(np.array(data['Low']), np.less_equal, order=window)[0])].head(4)
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
tops = data[data.tops > 0]
bots = data[data.bots > 0]
highestTop = round(tops.describe()['High']['max'],1)
filteredTops = tops[tops.tops > (highestTop-(highestTop*percentageFromTop))]
# print(tops)
# print(filteredTops)
# print(tops.sort_values(by=['tops'], ascending=False))
# print(tops.describe())
# print(f"Till {highestTop-(highestTop*percentageFromTop)}")
if(filteredTops.equals(tops)): # Tops are in the range
lowPoints = []
for i in range(len(tops)-1):
endDate = tops.iloc[i]['Date']
startDate = tops.iloc[i+1]['Date']
lowPoints.append(data[(data.Date >= startDate) & (data.Date <= endDate)].describe()['Low']['min'])
lowPointsOrg = lowPoints
lowPoints.sort(reverse=True)
lowPointsSorted = lowPoints
ltp = data.head(1)['Close'].iloc[0]
if lowPointsOrg == lowPointsSorted and ltp < highestTop and ltp > lowPoints[0]:
screenDict['Pattern'] = colorText.BOLD + colorText.GREEN + f'VCP (BO: {highestTop})' + colorText.END
saveDict['Pattern'] = f'VCP (BO: {highestTop})'
return True
except Exception as e:
import traceback
print(traceback.format_exc())
return False
def getNiftyPrediction(self, data, proxyServer):
import warnings
warnings.filterwarnings("ignore")
# Disable GPUs as this causes wrong preds in Docker
import tensorflow as tf
physical_devices = tf.config.list_physical_devices('GPU')
try:
tf.config.set_visible_devices([], 'GPU')
visible_devices = tf.config.get_visible_devices()
for device in visible_devices:
assert device.device_type != 'GPU'
except:
pass
#
model, pkl = Utility.tools.getNiftyModel(proxyServer=proxyServer)
datacopy = copy(data[pkl['columns']])
with SuppressOutput(suppress_stderr=True, suppress_stdout=True):
data = data[pkl['columns']]
### v2 Preprocessing
for col in pkl['columns']:
data[col] = data[col].pct_change(fill_method=None) * 100
data = data.ffill().dropna()
data = data.iloc[-1]
###
data = pkl['scaler'].transform([data])
pred = model.predict(data)[0]
if pred > 0.5:
out = colorText.BOLD + colorText.FAIL + "BEARISH" + colorText.END + colorText.BOLD
sug = "Hold your Short position!"
else:
out = colorText.BOLD + colorText.GREEN + "BULLISH" + colorText.END + colorText.BOLD
sug = "Stay Bullish!"
if not Utility.tools.isClosingHour():
print(colorText.BOLD + colorText.WARN + "Note: The AI prediction should be executed After 3 PM Around the Closing hours as the Prediction Accuracy is based on the Closing price!" + colorText.END)
print(colorText.BOLD + colorText.BLUE + "\n" + "[+] Nifty AI Prediction -> " + colorText.END + colorText.BOLD + "Market may Open {} next day! {}".format(out, sug) + colorText.END)
print(colorText.BOLD + colorText.BLUE + "\n" + "[+] Nifty AI Prediction -> " + colorText.END + "Probability/Strength of Prediction = {}%".format(Utility.tools.getSigmoidConfidence(pred[0])))
if isGui():
return pred, 'BULLISH' if pred <= 0.5 else 'BEARISH', Utility.tools.getSigmoidConfidence(pred[0]), pd.DataFrame(datacopy.iloc[-1]).T
return pred
def monitorFiveEma(self, proxyServer, fetcher, result_df, last_signal, risk_reward = 3):
col_names = ['High', 'Low', 'Close', '5EMA']
data_list = ['nifty_buy', 'banknifty_buy', 'nifty_sell', 'banknifty_sell']
data_tuple = fetcher.fetchFiveEmaData()
for cnt in range(len(data_tuple)):
d = data_tuple[cnt]
d['5EMA'] = ScreenerTA.EMA(d['Close'],timeperiod=5)
d = d[col_names]
d = d.dropna().round(2)
with SuppressOutput(suppress_stderr=True, suppress_stdout=True):
if 'sell' in data_list[cnt]:
streched = d[(d.Low > d['5EMA']) & (d.Low - d['5EMA'] > 0.5)]
streched['SL'] = streched.High
validate = d[(d.Low.shift(1) > d['5EMA'].shift(1)) & (d.Low.shift(1) - d['5EMA'].shift(1) > 0.5)]
old_index = validate.index
else:
mask = (d.High < d['5EMA']) & (d['5EMA'] - d.High > 0.5) # Buy
streched = d[mask]
streched['SL'] = streched.Low
validate = d.loc[mask.shift(1).fillna(False)]
old_index = validate.index
tgt = pd.DataFrame((validate.Close.reset_index(drop=True) - ((streched.SL.reset_index(drop=True) - validate.Close.reset_index(drop=True)) * risk_reward)),columns=['Target'])
validate = pd.concat([
validate.reset_index(drop=True),
streched['SL'].reset_index(drop=True),
tgt,
],
axis=1
)
validate = validate.tail(len(old_index))
validate = validate.set_index(old_index)
if 'sell' in data_list[cnt]:
final = validate[validate.Close < validate['5EMA']].tail(1)
else:
final = validate[validate.Close > validate['5EMA']].tail(1)
if data_list[cnt] not in last_signal:
last_signal[data_list[cnt]] = final
elif data_list[cnt] in last_signal:
try:
condition = last_signal[data_list[cnt]][0]['SL'].iloc[0]
except KeyError:
condition = last_signal[data_list[cnt]]['SL'].iloc[0]
# if last_signal[data_list[cnt]] is not final: # Debug - Shows all conditions
if condition != final['SL'].iloc[0]:
# Do something with results
try:
result_df = pd.concat([
result_df,
pd.DataFrame([
[
colorText.BLUE + str(final.index[0]) + colorText.END,
colorText.BOLD + colorText.WARN + data_list[cnt].split('_')[0].upper() + colorText.END,
(colorText.BOLD + colorText.FAIL + data_list[cnt].split('_')[1].upper() + colorText.END) if 'sell' in data_list[cnt] else (colorText.BOLD + colorText.GREEN + data_list[cnt].split('_')[1].upper() + colorText.END),
colorText.FAIL + str(final.SL[0]) + colorText.END,
colorText.GREEN + str(final.Target[0]) + colorText.END,
f'1:{risk_reward}'
]
], columns=result_df.columns)
], axis=0)
result_df.reset_index(drop=True, inplace=True)
except Exception as e:
pass
# Then update
last_signal[data_list[cnt]] = [final]
result_df.drop_duplicates(keep='last', inplace=True)
result_df.sort_values(by='Time', inplace=True)
return result_df[::-1]
# Add data to vector database
def addVector(self, data, stockCode, daysToLookback):
data = data[::-1] # Reinverting preprocessedData for pct_change
data = data.pct_change(fill_method=None)
# data = data[::-1] # Do we need to invert again? No we dont - See operation after flatten
data = data[['Open', 'High', 'Low', 'Close']]
data = data.reset_index(drop=True)
data = data.dropna()
data = data.to_numpy().flatten().tolist()
data = data[(-4 * daysToLookback):] # Keep only OHLC * daysToLookback samples
if len(data) == (4 * daysToLookback):
chroma_client = chromadb.PersistentClient(path="./chromadb_store/")
collection = chroma_client.get_or_create_collection(name="nse_stocks")
collection.upsert(
embeddings=[data],
documents=[stockCode],
ids=[stockCode]
)
return data
'''
# Find out trend for days to lookback
def validateVCP(data, screenDict, saveDict, daysToLookback=ConfigManager.daysToLookback, stockName=None):
// De-index date
data.reset_index(inplace=True)
data.rename(columns={'index':'Date'}, inplace=True)
data = data.head(daysToLookback)
data = data[::-1]
data = data.set_index(np.arange(len(data)))
data = data.fillna(0)
data = data.replace([np.inf, -np.inf], 0)
data['tops'] = data['Close'].iloc[list(argrelextrema(np.array(data['Close']), np.greater_equal, order=3)[0])]
data['bots'] = data['Close'].iloc[list(argrelextrema(np.array(data['Close']), np.less_equal, order=3)[0])]
try:
try:
top_slope,top_c = np.polyfit(data.index[data.tops > 0], data['tops'][data.tops > 0], 1)
bot_slope,bot_c = np.polyfit(data.index[data.bots > 0], data['bots'][data.bots > 0], 1)
topAngle = math.degrees(math.atan(top_slope))
vcpAngle = math.degrees(math.atan(bot_slope) - math.atan(top_slope))
# print(math.degrees(math.atan(top_slope)))
# print(math.degrees(math.atan(bot_slope)))
# print(vcpAngle)
# print(topAngle)
# print(data.max()['bots'])
# print(data.max()['tops'])
if (vcpAngle > 20 and vcpAngle < 70) and (topAngle > -10 and topAngle < 10) and (data['bots'].max() <= data['tops'].max()) and (len(data['bots'][data.bots > 0]) > 1):
print("---> GOOD VCP %s at %sRs" % (stockName, top_c))
import os
os.system("echo %s >> vcp_plots\VCP.txt" % stockName)
import matplotlib.pyplot as plt
plt.scatter(data.index[data.tops > 0], data['tops'][data.tops > 0], c='g')
plt.scatter(data.index[data.bots > 0], data['bots'][data.bots > 0], c='r')
plt.plot(data.index, data['Close'])
plt.plot(data.index, top_slope*data.index+top_c,'g--')
plt.plot(data.index, bot_slope*data.index+bot_c,'r--')
if stockName != None:
plt.title(stockName)
# plt.show()
plt.savefig('vcp_plots\%s.png' % stockName)
plt.clf()
except np.RankWarning:
pass
except np.linalg.LinAlgError:
return False
'''