''' * Project : Screenipy * Author : Pranjal Joshi * Created : 28/04/2021 * Description : Class for managing misc and utility methods ''' import os import sys import platform import datetime import pytz import pickle import requests import time import joblib import keras import pandas as pd from alive_progress import alive_bar from tabulate import tabulate from time import sleep from classes.ColorText import colorText from classes.Changelog import VERSION, changelog import classes.ConfigManager as ConfigManager art = colorText.GREEN + ''' .d8888b. d8b d88P Y88b Y8P Y88b. "Y888b. .d8888b 888d888 .d88b. .d88b. 88888b. 888 88888b. 888 888 "Y88b. d88P" 888P" d8P Y8b d8P Y8b 888 "88b 888 888 "88b 888 888 "888 888 888 88888888 88888888 888 888 888 888 888 888 888 Y88b d88P Y88b. 888 Y8b. Y8b. 888 888 888 888 d88P Y88b 888 "Y8888P" "Y8888P 888 "Y8888 "Y8888 888 888 888 88888P" "Y88888 888 888 888 Y8b d88P 888 "Y88P" ''' + colorText.END lastScreened = 'last_screened_results.pkl' lastScreenedUnformatted = 'last_screened_unformatted_results.pkl' # Class for managing misc and utility methods class tools: def clearScreen(): if platform.system() == 'Windows': os.system('cls') else: os.system('clear') print(art) # Print about developers and repository def showDevInfo(): print('\n'+changelog) print(colorText.BOLD + colorText.WARN + "\n[+] Developer: Pranjal Joshi." + colorText.END) print(colorText.BOLD + colorText.WARN + ("[+] Version: %s" % VERSION) + colorText.END) print(colorText.BOLD + "[+] Home Page: https://github.com/pranjal-joshi/Screeni-py" + colorText.END) print(colorText.BOLD + colorText.FAIL + "[+] Read/Post Issues here: https://github.com/pranjal-joshi/Screeni-py/issues" + colorText.END) print(colorText.BOLD + colorText.GREEN + "[+] Join Community Discussions: https://github.com/pranjal-joshi/Screeni-py/discussions" + colorText.END) print(colorText.BOLD + colorText.BLUE + "[+] Download latest software from https://github.com/pranjal-joshi/Screeni-py/releases/latest" + colorText.END) input('') # Save last screened result to pickle file def setLastScreenedResults(df, unformatted=False): try: if not unformatted: df.sort_values(by=['Stock'], ascending=True, inplace=True) df.to_pickle(lastScreened) else: df.sort_values(by=['Stock'], ascending=True, inplace=True) df.to_pickle(lastScreenedUnformatted) except IOError: print(colorText.BOLD + colorText.FAIL + '[+] Failed to save recently screened result table on disk! Skipping..' + colorText.END) # Load last screened result to pickle file def getLastScreenedResults(): try: df = pd.read_pickle(lastScreened) print(colorText.BOLD + colorText.GREEN + '\n[+] Showing recently screened results..\n' + colorText.END) print(tabulate(df, headers='keys', tablefmt='psql')) print(colorText.BOLD + colorText.WARN + "[+] Note: Trend calculation is based on number of recent days to screen as per your configuration." + colorText.END) input(colorText.BOLD + colorText.GREEN + '[+] Press any key to continue..' + colorText.END) except FileNotFoundError: print(colorText.BOLD + colorText.FAIL + '[+] Failed to load recently screened result table from disk! Skipping..' + colorText.END) def isTradingTime(): curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata')) openTime = curr.replace(hour=9, minute=15) closeTime = curr.replace(hour=15, minute=30) return ((openTime <= curr <= closeTime) and (0 <= curr.weekday() <= 4)) def isClosingHour(): curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata')) openTime = curr.replace(hour=15, minute=00) closeTime = curr.replace(hour=15, minute=30) return ((openTime <= curr <= closeTime) and (0 <= curr.weekday() <= 4)) def saveStockData(stockDict, configManager, loadCount): curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata')) openTime = curr.replace(hour=9, minute=15) cache_date = datetime.date.today() # for monday to friday weekday = datetime.date.today().weekday() if curr < openTime: # for monday to friday before 9:15 cache_date = datetime.datetime.today() - datetime.timedelta(1) if weekday == 0 and curr < openTime: # for monday before 9:15 cache_date = datetime.datetime.today() - datetime.timedelta(3) if weekday == 5 or weekday == 6: # for saturday and sunday cache_date = datetime.datetime.today() - datetime.timedelta(days=weekday - 4) cache_date = cache_date.strftime("%d%m%y") cache_file = "stock_data_" + str(cache_date) + ".pkl" configManager.deleteStockData(excludeFile=cache_file) if not os.path.exists(cache_file) or len(stockDict) > (loadCount+1): with open(cache_file, 'wb') as f: try: pickle.dump(stockDict.copy(), f) print(colorText.BOLD + colorText.GREEN + "=> Done." + colorText.END) except pickle.PicklingError: print(colorText.BOLD + colorText.FAIL + "=> Error while Caching Stock Data." + colorText.END) else: print(colorText.BOLD + colorText.GREEN + "=> Already Cached." + colorText.END) def loadStockData(stockDict, configManager, proxyServer=None): curr = datetime.datetime.now(pytz.timezone('Asia/Kolkata')) openTime = curr.replace(hour=9, minute=15) last_cached_date = datetime.date.today() # for monday to friday after 3:30 weekday = datetime.date.today().weekday() if curr < openTime: # for monday to friday before 9:15 last_cached_date = datetime.datetime.today() - datetime.timedelta(1) if weekday == 5 or weekday == 6: # for saturday and sunday last_cached_date = datetime.datetime.today() - datetime.timedelta(days=weekday - 4) if weekday == 0 and curr < openTime: # for monday before 9:15 last_cached_date = datetime.datetime.today() - datetime.timedelta(3) last_cached_date = last_cached_date.strftime("%d%m%y") cache_file = "stock_data_" + str(last_cached_date) + ".pkl" if os.path.exists(cache_file): with open(cache_file, 'rb') as f: try: stockData = pickle.load(f) print(colorText.BOLD + colorText.GREEN + "[+] Automatically Using Cached Stock Data due to After-Market hours!" + colorText.END) for stock in stockData: stockDict[stock] = stockData.get(stock) except pickle.UnpicklingError: print(colorText.BOLD + colorText.FAIL + "[+] Error while Reading Stock Cache." + colorText.END) except EOFError: print(colorText.BOLD + colorText.FAIL + "[+] Stock Cache Corrupted." + colorText.END) elif ConfigManager.default_period == configManager.period and ConfigManager.default_duration == configManager.duration: cache_url = "https://raw.github.com/pranjal-joshi/Screeni-py/actions-data-download/actions-data-download/" + cache_file if proxyServer is not None: resp = requests.get(cache_url, stream=True, proxies={'https':proxyServer}) else: resp = requests.get(cache_url, stream=True) if resp.status_code == 200: print(colorText.BOLD + colorText.FAIL + "[+] After-Market Stock Data is not cached.." + colorText.END) print(colorText.BOLD + colorText.GREEN + "[+] Downloading cache from Screenipy server for faster processing, Please Wait.." + colorText.END) try: chunksize = 1024*1024*1 filesize = int(int(resp.headers.get('content-length'))/chunksize) bar, spinner = tools.getProgressbarStyle() f = open(cache_file, 'wb') dl = 0 with alive_bar(filesize, bar=bar, spinner=spinner, manual=True) as progressbar: for data in resp.iter_content(chunk_size=chunksize): dl += 1 f.write(data) progressbar(dl/filesize) if dl >= filesize: progressbar(1.0) f.close() except Exception as e: print("[!] Download Error - " + str(e)) print("") tools.loadStockData(stockDict, configManager, proxyServer) else: print(colorText.BOLD + colorText.FAIL + "[+] Cache unavailable on Screenipy server, Continuing.." + colorText.END) # Save screened results to excel def promptSaveResults(df): if isDocker() or isGui(): # Skip export to excel inside docker return try: response = str(input(colorText.BOLD + colorText.WARN + '[>] Do you want to save the results in excel file? [Y/N]: ')).upper() except ValueError: response = 'Y' if response != 'N': filename = 'screenipy-result_' + \ datetime.datetime.now().strftime("%d-%m-%y_%H.%M.%S")+".xlsx" df.to_excel(filename) print(colorText.BOLD + colorText.GREEN + ("[+] Results saved to %s" % filename) + colorText.END) # Prompt for asking RSI def promptRSIValues(): try: minRSI, maxRSI = int(input(colorText.BOLD + colorText.WARN + "\n[+] Enter Min RSI value: " + colorText.END)), int( input(colorText.BOLD + colorText.WARN + "[+] Enter Max RSI value: " + colorText.END)) if (minRSI >= 0 and minRSI <= 100) and (maxRSI >= 0 and maxRSI <= 100) and (minRSI <= maxRSI): return (minRSI, maxRSI) raise ValueError except ValueError: return (0, 0) # Prompt for Reversal screening def promptReversalScreening(): try: resp = int(input(colorText.BOLD + colorText.WARN + """\n[+] Select Option: 1 > Screen for Buy Signal (Bullish Reversal) 2 > Screen for Sell Signal (Bearish Reversal) 3 > Screen for Momentum Gainers (Rising Bullish Momentum) 4 > Screen for Reversal at Moving Average (Bullish Reversal) 5 > Screen for Volume Spread Analysis (Bullish VSA Reversal) 6 > Screen for Narrow Range (NRx) Reversal 7 > Screen for Reversal using Lorentzian Classifier (Machine Learning based indicator) 8 > Screen for Reversal using RSI MA Crossing 0 > Cancel [+] Select option: """ + colorText.END)) if resp >= 0 and resp <= 8: if resp == 4: try: maLength = int(input(colorText.BOLD + colorText.WARN + '\n[+] Enter MA Length (E.g. 50 or 200): ' + colorText.END)) return resp, maLength except ValueError: print(colorText.BOLD + colorText.FAIL + '\n[!] Invalid Input! MA Lenght should be single integer value!\n' + colorText.END) raise ValueError elif resp == 6: try: maLength = int(input(colorText.BOLD + colorText.WARN + '\n[+] Enter NR timeframe [Integer Number] (E.g. 4, 7, etc.): ' + colorText.END)) return resp, maLength except ValueError: print(colorText.BOLD + colorText.FAIL + '\n[!] Invalid Input! NR timeframe should be single integer value!\n' + colorText.END) raise ValueError elif resp == 7: try: return resp, 1 except ValueError: print(colorText.BOLD + colorText.FAIL + '\n[!] Invalid Input! Select valid Signal Type!\n' + colorText.END) raise ValueError elif resp == 8: maLength = 9 return resp, maLength return resp, None raise ValueError except ValueError: return None, None # Prompt for Reversal screening def promptChartPatterns(): try: resp = int(input(colorText.BOLD + colorText.WARN + """\n[+] Select Option: 1 > Screen for Bullish Inside Bar (Flag) Pattern 2 > Screen for Bearish Inside Bar (Flag) Pattern 3 > Screen for the Confluence (50 & 200 MA/EMA) 4 > Screen for VCP (Experimental) 5 > Screen for Buying at Trendline (Ideal for Swing/Mid/Long term) 0 > Cancel [+] Select option: """ + colorText.END)) if resp == 1 or resp == 2: candles = int(input(colorText.BOLD + colorText.WARN + "\n[+] How many candles (TimeFrame) to look back Inside Bar formation? : " + colorText.END)) return (resp, candles) if resp == 3: percent = float(input(colorText.BOLD + colorText.WARN + "\n[+] Enter Percentage within which all MA/EMAs should be (Ideal: 1-2%)? : " + colorText.END)) return (resp, percent/100.0) if resp >= 0 and resp <= 5: return resp, 0 raise ValueError except ValueError: input(colorText.BOLD + colorText.FAIL + "\n[+] Invalid Option Selected. Press Any Key to Continue..." + colorText.END) return (None, None) # Prompt for Similar stock search def promptSimilarStockSearch(): try: stockCode = str(input(colorText.BOLD + colorText.WARN + "\n[+] Enter the Name of the stock to search similar stocks for: " + colorText.END)).upper() candles = int(input(colorText.BOLD + colorText.WARN + "\n[+] How many candles (TimeFrame) to look back for similarity? : " + colorText.END)) return stockCode, candles except ValueError: input(colorText.BOLD + colorText.FAIL + "\n[+] Invalid Option Selected. Press Any Key to Continue..." + colorText.END) return None, None def getProgressbarStyle(): bar = 'smooth' spinner = 'waves' if 'Windows' in platform.platform(): bar = 'classic2' spinner = 'dots_recur' return bar, spinner def getNiftyModel(proxyServer=None): files = ['nifty_model_v3.h5', 'nifty_model_v3.pkl'] urls = [ f"https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/{files[0]}", f"https://raw.github.com/pranjal-joshi/Screeni-py/new-features/src/ml/{files[1]}" ] if os.path.isfile(files[0]) and os.path.isfile(files[1]): file_age = (time.time() - os.path.getmtime(files[0]))/604800 if file_age > 1: download = True os.remove(files[0]) os.remove(files[1]) else: download = False else: download = True if download: for file_url in urls: if proxyServer is not None: resp = requests.get(file_url, stream=True, proxies={'https':proxyServer}) else: resp = requests.get(file_url, stream=True) if resp.status_code == 200: print(colorText.BOLD + colorText.GREEN + "[+] Downloading AI model (v3) for Nifty predictions, Please Wait.." + colorText.END) try: chunksize = 1024*1024*1 filesize = int(int(resp.headers.get('content-length'))/chunksize) filesize = 1 if not filesize else filesize bar, spinner = tools.getProgressbarStyle() f = open(file_url.split('/')[-1], 'wb') dl = 0 with alive_bar(filesize, bar=bar, spinner=spinner, manual=True) as progressbar: for data in resp.iter_content(chunk_size=chunksize): dl += 1 f.write(data) progressbar(dl/filesize) if dl >= filesize: progressbar(1.0) f.close() except Exception as e: print("[!] Download Error - " + str(e)) time.sleep(3) model = keras.models.load_model(files[0]) pkl = joblib.load(files[1]) return model, pkl def getSigmoidConfidence(x): out_min, out_max = 0, 100 if x > 0.5: in_min = 0.50001 in_max = 1 else: in_min = 0 in_max = 0.5 return round(((x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min),3) def alertSound(beeps=3, delay=0.2): for i in range(beeps): print('\a') sleep(delay) def isBacktesting(backtestDate): try: if datetime.date.today() != backtestDate: return True return False except: return False def calculateBacktestReport(data, backtestDict:dict): try: recent = data.head(1)['Close'].iloc[0] for key, val in backtestDict.copy().items(): if val is not None: try: backtestDict[key] = str(round((backtestDict[key]-recent)/recent*100,1)) + "%" except TypeError: del backtestDict[key] # backtestDict[key] = None continue else: del backtestDict[key] except: pass return backtestDict def isDocker(): if 'SCREENIPY_DOCKER' in os.environ: return True return False def isGui(): if 'SCREENIPY_GUI' in os.environ: return True return False