Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,8 +14,7 @@ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base",
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
#Use own TTS Model
|
17 |
-
processor = SpeechT5Processor.from_pretrained("
|
18 |
-
#processor = SpeechT5Processor.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
|
19 |
#processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
20 |
#processor = SpeechT5Processor.from_pretrained("Salama1429/TTS_German_Speecht5_finetuned_voxpopuli_nl")
|
21 |
# Load model directly
|
@@ -24,8 +23,8 @@ processor = SpeechT5Processor.from_pretrained("jason1i/speecht5_finetuned_voxpop
|
|
24 |
|
25 |
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
26 |
#Use own TTS Model
|
27 |
-
|
28 |
-
|
29 |
#model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
30 |
|
31 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
@@ -43,7 +42,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
|
|
43 |
# At Inference. it should use translate(sample["audio"].copy())
|
44 |
|
45 |
def translate(audio):
|
46 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "
|
47 |
return outputs["text"]
|
48 |
|
49 |
|
|
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
#processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
#Use own TTS Model
|
17 |
+
processor = SpeechT5Processor.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi")
|
|
|
18 |
#processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
19 |
#processor = SpeechT5Processor.from_pretrained("Salama1429/TTS_German_Speecht5_finetuned_voxpopuli_nl")
|
20 |
# Load model directly
|
|
|
23 |
|
24 |
#model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
25 |
#Use own TTS Model
|
26 |
+
|
27 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("jasonl1/speecht5_finetuned_voxpopuli_fi",ignore_mismatched_sizes=True,)
|
28 |
#model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
|
29 |
|
30 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
|
|
42 |
# At Inference. it should use translate(sample["audio"].copy())
|
43 |
|
44 |
def translate(audio):
|
45 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fi"})
|
46 |
return outputs["text"]
|
47 |
|
48 |
|