Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +3 -0
- .gitignore +2 -0
- Myloss.py +157 -0
- README.md +2 -8
- __pycache__/dataloader.cpython-311.pyc +0 -0
- __pycache__/model.cpython-311.pyc +0 -0
- app.py +81 -0
- data/test_data/DICM/01.jpg +0 -0
- data/test_data/DICM/02.jpg +0 -0
- data/test_data/DICM/03.jpg +0 -0
- data/test_data/DICM/04.jpg +0 -0
- data/test_data/DICM/05.jpg +0 -0
- data/test_data/DICM/06.jpg +0 -0
- data/test_data/DICM/07.jpg +0 -0
- data/test_data/DICM/08.jpg +0 -0
- data/test_data/DICM/09.jpg +0 -0
- data/test_data/DICM/10.jpg +0 -0
- data/test_data/DICM/11.jpg +0 -0
- data/test_data/DICM/12.jpg +0 -0
- data/test_data/DICM/13.jpg +0 -0
- data/test_data/DICM/14.jpg +0 -0
- data/test_data/DICM/15.jpg +0 -0
- data/test_data/DICM/16.jpg +0 -0
- data/test_data/DICM/17.jpg +0 -0
- data/test_data/DICM/18.jpg +0 -0
- data/test_data/DICM/19.jpg +0 -0
- data/test_data/DICM/20.jpg +0 -0
- data/test_data/DICM/21.jpg +0 -0
- data/test_data/DICM/22.jpg +0 -0
- data/test_data/DICM/25.jpg +0 -0
- data/test_data/DICM/26.jpg +0 -0
- data/test_data/DICM/27.jpg +0 -0
- data/test_data/DICM/28.jpg +0 -0
- data/test_data/DICM/29.jpg +0 -0
- data/test_data/DICM/30.jpg +0 -0
- data/test_data/DICM/31.jpg +0 -0
- data/test_data/DICM/32.jpg +0 -0
- data/test_data/DICM/33.jpg +0 -0
- data/test_data/DICM/34.jpg +0 -0
- data/test_data/DICM/35.jpg +0 -0
- data/test_data/DICM/36.jpg +0 -0
- data/test_data/DICM/37.jpg +0 -0
- data/test_data/DICM/38.jpg +0 -0
- data/test_data/DICM/39.jpg +0 -0
- data/test_data/DICM/40.jpg +0 -0
- data/test_data/DICM/41.jpg +0 -0
- data/test_data/DICM/42.jpg +0 -0
- data/test_data/DICM/43.jpg +0 -0
- data/test_data/DICM/44.jpg +0 -0
- data/test_data/DICM/45.jpg +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/test_data/LIME/1.bmp filter=lfs diff=lfs merge=lfs -text
|
37 |
+
data/test_data/LIME/10.bmp filter=lfs diff=lfs merge=lfs -text
|
38 |
+
data/test_data/LIME/5.bmp filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
data/
|
Myloss.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import math
|
5 |
+
from torchvision.models.vgg import vgg16
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
class L_color(nn.Module):
|
10 |
+
|
11 |
+
def __init__(self):
|
12 |
+
super(L_color, self).__init__()
|
13 |
+
|
14 |
+
def forward(self, x ):
|
15 |
+
|
16 |
+
b,c,h,w = x.shape
|
17 |
+
|
18 |
+
mean_rgb = torch.mean(x,[2,3],keepdim=True)
|
19 |
+
mr,mg, mb = torch.split(mean_rgb, 1, dim=1)
|
20 |
+
Drg = torch.pow(mr-mg,2)
|
21 |
+
Drb = torch.pow(mr-mb,2)
|
22 |
+
Dgb = torch.pow(mb-mg,2)
|
23 |
+
k = torch.pow(torch.pow(Drg,2) + torch.pow(Drb,2) + torch.pow(Dgb,2),0.5)
|
24 |
+
|
25 |
+
|
26 |
+
return k
|
27 |
+
|
28 |
+
|
29 |
+
class L_spa(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self):
|
32 |
+
super(L_spa, self).__init__()
|
33 |
+
# print(1)kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
|
34 |
+
kernel_left = torch.FloatTensor( [[0,0,0],[-1,1,0],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
|
35 |
+
kernel_right = torch.FloatTensor( [[0,0,0],[0,1,-1],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
|
36 |
+
kernel_up = torch.FloatTensor( [[0,-1,0],[0,1, 0 ],[0,0,0]]).cuda().unsqueeze(0).unsqueeze(0)
|
37 |
+
kernel_down = torch.FloatTensor( [[0,0,0],[0,1, 0],[0,-1,0]]).cuda().unsqueeze(0).unsqueeze(0)
|
38 |
+
self.weight_left = nn.Parameter(data=kernel_left, requires_grad=False)
|
39 |
+
self.weight_right = nn.Parameter(data=kernel_right, requires_grad=False)
|
40 |
+
self.weight_up = nn.Parameter(data=kernel_up, requires_grad=False)
|
41 |
+
self.weight_down = nn.Parameter(data=kernel_down, requires_grad=False)
|
42 |
+
self.pool = nn.AvgPool2d(4)
|
43 |
+
def forward(self, org , enhance ):
|
44 |
+
b,c,h,w = org.shape
|
45 |
+
|
46 |
+
org_mean = torch.mean(org,1,keepdim=True)
|
47 |
+
enhance_mean = torch.mean(enhance,1,keepdim=True)
|
48 |
+
|
49 |
+
org_pool = self.pool(org_mean)
|
50 |
+
enhance_pool = self.pool(enhance_mean)
|
51 |
+
|
52 |
+
weight_diff =torch.max(torch.FloatTensor([1]).cuda() + 10000*torch.min(org_pool - torch.FloatTensor([0.3]).cuda(),torch.FloatTensor([0]).cuda()),torch.FloatTensor([0.5]).cuda())
|
53 |
+
E_1 = torch.mul(torch.sign(enhance_pool - torch.FloatTensor([0.5]).cuda()) ,enhance_pool-org_pool)
|
54 |
+
|
55 |
+
|
56 |
+
D_org_letf = F.conv2d(org_pool , self.weight_left, padding=1)
|
57 |
+
D_org_right = F.conv2d(org_pool , self.weight_right, padding=1)
|
58 |
+
D_org_up = F.conv2d(org_pool , self.weight_up, padding=1)
|
59 |
+
D_org_down = F.conv2d(org_pool , self.weight_down, padding=1)
|
60 |
+
|
61 |
+
D_enhance_letf = F.conv2d(enhance_pool , self.weight_left, padding=1)
|
62 |
+
D_enhance_right = F.conv2d(enhance_pool , self.weight_right, padding=1)
|
63 |
+
D_enhance_up = F.conv2d(enhance_pool , self.weight_up, padding=1)
|
64 |
+
D_enhance_down = F.conv2d(enhance_pool , self.weight_down, padding=1)
|
65 |
+
|
66 |
+
D_left = torch.pow(D_org_letf - D_enhance_letf,2)
|
67 |
+
D_right = torch.pow(D_org_right - D_enhance_right,2)
|
68 |
+
D_up = torch.pow(D_org_up - D_enhance_up,2)
|
69 |
+
D_down = torch.pow(D_org_down - D_enhance_down,2)
|
70 |
+
E = (D_left + D_right + D_up +D_down)
|
71 |
+
# E = 25*(D_left + D_right + D_up +D_down)
|
72 |
+
|
73 |
+
return E
|
74 |
+
class L_exp(nn.Module):
|
75 |
+
|
76 |
+
def __init__(self,patch_size,mean_val):
|
77 |
+
super(L_exp, self).__init__()
|
78 |
+
# print(1)
|
79 |
+
self.pool = nn.AvgPool2d(patch_size)
|
80 |
+
self.mean_val = mean_val
|
81 |
+
def forward(self, x ):
|
82 |
+
|
83 |
+
b,c,h,w = x.shape
|
84 |
+
x = torch.mean(x,1,keepdim=True)
|
85 |
+
mean = self.pool(x)
|
86 |
+
|
87 |
+
d = torch.mean(torch.pow(mean- torch.FloatTensor([self.mean_val] ).cuda(),2))
|
88 |
+
return d
|
89 |
+
|
90 |
+
class L_TV(nn.Module):
|
91 |
+
def __init__(self,TVLoss_weight=1):
|
92 |
+
super(L_TV,self).__init__()
|
93 |
+
self.TVLoss_weight = TVLoss_weight
|
94 |
+
|
95 |
+
def forward(self,x):
|
96 |
+
batch_size = x.size()[0]
|
97 |
+
h_x = x.size()[2]
|
98 |
+
w_x = x.size()[3]
|
99 |
+
count_h = (x.size()[2]-1) * x.size()[3]
|
100 |
+
count_w = x.size()[2] * (x.size()[3] - 1)
|
101 |
+
h_tv = torch.pow((x[:,:,1:,:]-x[:,:,:h_x-1,:]),2).sum()
|
102 |
+
w_tv = torch.pow((x[:,:,:,1:]-x[:,:,:,:w_x-1]),2).sum()
|
103 |
+
return self.TVLoss_weight*2*(h_tv/count_h+w_tv/count_w)/batch_size
|
104 |
+
class Sa_Loss(nn.Module):
|
105 |
+
def __init__(self):
|
106 |
+
super(Sa_Loss, self).__init__()
|
107 |
+
# print(1)
|
108 |
+
def forward(self, x ):
|
109 |
+
# self.grad = np.ones(x.shape,dtype=np.float32)
|
110 |
+
b,c,h,w = x.shape
|
111 |
+
# x_de = x.cpu().detach().numpy()
|
112 |
+
r,g,b = torch.split(x , 1, dim=1)
|
113 |
+
mean_rgb = torch.mean(x,[2,3],keepdim=True)
|
114 |
+
mr,mg, mb = torch.split(mean_rgb, 1, dim=1)
|
115 |
+
Dr = r-mr
|
116 |
+
Dg = g-mg
|
117 |
+
Db = b-mb
|
118 |
+
k =torch.pow( torch.pow(Dr,2) + torch.pow(Db,2) + torch.pow(Dg,2),0.5)
|
119 |
+
# print(k)
|
120 |
+
|
121 |
+
|
122 |
+
k = torch.mean(k)
|
123 |
+
return k
|
124 |
+
|
125 |
+
class perception_loss(nn.Module):
|
126 |
+
def __init__(self):
|
127 |
+
super(perception_loss, self).__init__()
|
128 |
+
features = vgg16(pretrained=True).features
|
129 |
+
self.to_relu_1_2 = nn.Sequential()
|
130 |
+
self.to_relu_2_2 = nn.Sequential()
|
131 |
+
self.to_relu_3_3 = nn.Sequential()
|
132 |
+
self.to_relu_4_3 = nn.Sequential()
|
133 |
+
|
134 |
+
for x in range(4):
|
135 |
+
self.to_relu_1_2.add_module(str(x), features[x])
|
136 |
+
for x in range(4, 9):
|
137 |
+
self.to_relu_2_2.add_module(str(x), features[x])
|
138 |
+
for x in range(9, 16):
|
139 |
+
self.to_relu_3_3.add_module(str(x), features[x])
|
140 |
+
for x in range(16, 23):
|
141 |
+
self.to_relu_4_3.add_module(str(x), features[x])
|
142 |
+
|
143 |
+
# don't need the gradients, just want the features
|
144 |
+
for param in self.parameters():
|
145 |
+
param.requires_grad = False
|
146 |
+
|
147 |
+
def forward(self, x):
|
148 |
+
h = self.to_relu_1_2(x)
|
149 |
+
h_relu_1_2 = h
|
150 |
+
h = self.to_relu_2_2(h)
|
151 |
+
h_relu_2_2 = h
|
152 |
+
h = self.to_relu_3_3(h)
|
153 |
+
h_relu_3_3 = h
|
154 |
+
h = self.to_relu_4_3(h)
|
155 |
+
h_relu_4_3 = h
|
156 |
+
# out = (h_relu_1_2, h_relu_2_2, h_relu_3_3, h_relu_4_3)
|
157 |
+
return h_relu_4_3
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title: Zero-
|
3 |
-
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.35.2
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Zero-DCE_code
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 3.35.2
|
|
|
|
|
6 |
---
|
|
|
|
__pycache__/dataloader.cpython-311.pyc
ADDED
Binary file (2.48 kB). View file
|
|
__pycache__/model.cpython-311.pyc
ADDED
Binary file (4.33 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision
|
4 |
+
import torch.backends.cudnn as cudnn
|
5 |
+
import torch.optim
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import argparse
|
9 |
+
import time
|
10 |
+
import dataloader
|
11 |
+
import model
|
12 |
+
import numpy as np
|
13 |
+
from torchvision import transforms
|
14 |
+
from PIL import Image
|
15 |
+
import glob
|
16 |
+
import time
|
17 |
+
import gradio as gr
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def lowlight(image_path):
|
22 |
+
os.environ['CUDA_VISIBLE_DEVICES']='0'
|
23 |
+
data_lowlight = Image.open(image_path)
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
data_lowlight = (np.asarray(data_lowlight)/255.0)
|
28 |
+
|
29 |
+
|
30 |
+
data_lowlight = torch.from_numpy(data_lowlight).float()
|
31 |
+
data_lowlight = data_lowlight.permute(2,0,1)
|
32 |
+
data_lowlight = data_lowlight.cuda().unsqueeze(0)
|
33 |
+
|
34 |
+
DCE_net = model.enhance_net_nopool().cuda()
|
35 |
+
DCE_net.load_state_dict(torch.load('snapshots/Epoch99.pth'))
|
36 |
+
start = time.time()
|
37 |
+
_,enhanced_image,_ = DCE_net(data_lowlight)
|
38 |
+
|
39 |
+
end_time = (time.time() - start)
|
40 |
+
print(end_time)
|
41 |
+
image_path = image_path.replace('test_data','result')
|
42 |
+
result_path = image_path
|
43 |
+
if not os.path.exists(image_path.replace('/'+image_path.split("/")[-1],'')):
|
44 |
+
os.makedirs(image_path.replace('/'+image_path.split("/")[-1],''))
|
45 |
+
|
46 |
+
torchvision.utils.save_image(enhanced_image, result_path)
|
47 |
+
|
48 |
+
def predict(img):
|
49 |
+
data_lowlight = (np.asarray(img)/255.0)
|
50 |
+
|
51 |
+
|
52 |
+
data_lowlight = torch.from_numpy(data_lowlight).float()
|
53 |
+
data_lowlight = data_lowlight.permute(2,0,1)
|
54 |
+
data_lowlight = data_lowlight.cuda().unsqueeze(0)
|
55 |
+
|
56 |
+
DCE_net = model.enhance_net_nopool().cuda()
|
57 |
+
DCE_net.load_state_dict(torch.load('snapshots/Epoch99.pth'))
|
58 |
+
_,enhanced_image,_ = DCE_net(data_lowlight)
|
59 |
+
|
60 |
+
return enhanced_image
|
61 |
+
|
62 |
+
|
63 |
+
if __name__ == '__main__':
|
64 |
+
# test_images
|
65 |
+
with torch.no_grad():
|
66 |
+
# filePath = 'data/test_data/'
|
67 |
+
|
68 |
+
# file_list = os.listdir(filePath)
|
69 |
+
|
70 |
+
# for file_name in file_list:
|
71 |
+
# test_list = glob.glob(filePath+file_name+"/*")
|
72 |
+
# for image in test_list:
|
73 |
+
# # image = image
|
74 |
+
# print(image)
|
75 |
+
# lowlight(image)
|
76 |
+
|
77 |
+
interface = gr.Interface(fn=predict, inputs='image', outputs='image')
|
78 |
+
interface.launch()
|
79 |
+
|
80 |
+
|
81 |
+
|
data/test_data/DICM/01.jpg
ADDED
![]() |
data/test_data/DICM/02.jpg
ADDED
![]() |
data/test_data/DICM/03.jpg
ADDED
![]() |
data/test_data/DICM/04.jpg
ADDED
![]() |
data/test_data/DICM/05.jpg
ADDED
![]() |
data/test_data/DICM/06.jpg
ADDED
![]() |
data/test_data/DICM/07.jpg
ADDED
![]() |
data/test_data/DICM/08.jpg
ADDED
![]() |
data/test_data/DICM/09.jpg
ADDED
![]() |
data/test_data/DICM/10.jpg
ADDED
![]() |
data/test_data/DICM/11.jpg
ADDED
![]() |
data/test_data/DICM/12.jpg
ADDED
![]() |
data/test_data/DICM/13.jpg
ADDED
![]() |
data/test_data/DICM/14.jpg
ADDED
![]() |
data/test_data/DICM/15.jpg
ADDED
![]() |
data/test_data/DICM/16.jpg
ADDED
![]() |
data/test_data/DICM/17.jpg
ADDED
![]() |
data/test_data/DICM/18.jpg
ADDED
![]() |
data/test_data/DICM/19.jpg
ADDED
![]() |
data/test_data/DICM/20.jpg
ADDED
![]() |
data/test_data/DICM/21.jpg
ADDED
![]() |
data/test_data/DICM/22.jpg
ADDED
![]() |
data/test_data/DICM/25.jpg
ADDED
![]() |
data/test_data/DICM/26.jpg
ADDED
![]() |
data/test_data/DICM/27.jpg
ADDED
![]() |
data/test_data/DICM/28.jpg
ADDED
![]() |
data/test_data/DICM/29.jpg
ADDED
![]() |
data/test_data/DICM/30.jpg
ADDED
![]() |
data/test_data/DICM/31.jpg
ADDED
![]() |
data/test_data/DICM/32.jpg
ADDED
![]() |
data/test_data/DICM/33.jpg
ADDED
![]() |
data/test_data/DICM/34.jpg
ADDED
![]() |
data/test_data/DICM/35.jpg
ADDED
![]() |
data/test_data/DICM/36.jpg
ADDED
![]() |
data/test_data/DICM/37.jpg
ADDED
![]() |
data/test_data/DICM/38.jpg
ADDED
![]() |
data/test_data/DICM/39.jpg
ADDED
![]() |
data/test_data/DICM/40.jpg
ADDED
![]() |
data/test_data/DICM/41.jpg
ADDED
![]() |
data/test_data/DICM/42.jpg
ADDED
![]() |
data/test_data/DICM/43.jpg
ADDED
![]() |
data/test_data/DICM/44.jpg
ADDED
![]() |
data/test_data/DICM/45.jpg
ADDED
![]() |