Spaces:
Runtime error
Runtime error
Jason Adrian
commited on
Commit
·
4a3b432
1
Parent(s):
3e4de6f
Adding metadata + new class features
Browse files
app.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
import csv
|
|
|
4 |
|
5 |
class_names = ['cat', 'dog']
|
6 |
|
7 |
def update_dropdown(className):
|
8 |
class_names.append(className)
|
9 |
updated_choices = gr.Dropdown(choices=class_names)
|
10 |
-
return updated_choices
|
11 |
|
12 |
def show_picked_class(className):
|
13 |
return className
|
@@ -27,7 +28,7 @@ def image_classifier(inp):
|
|
27 |
|
28 |
labeled_result = {name:score for name, score in zip(class_names, normalized_percentages)}
|
29 |
|
30 |
-
return labeled_result
|
31 |
|
32 |
demo = gr.Blocks()
|
33 |
|
@@ -50,10 +51,9 @@ with demo as app:
|
|
50 |
b2 = gr.Button("Show me the picked class")
|
51 |
picked_class = gr.Textbox()
|
52 |
|
53 |
-
b1.click(update_dropdown, inputs=text_input, outputs=text_options)
|
54 |
b2.click(show_picked_class, inputs=text_options, outputs=picked_class)
|
55 |
|
56 |
-
process_btn.click(image_classifier, inputs=inp_img, outputs=
|
57 |
clear_btn.click(lambda:(
|
58 |
gr.update(value=None),
|
59 |
gr.update(value=None)
|
@@ -83,6 +83,8 @@ with demo as app:
|
|
83 |
images_label = gr.Dropdown(class_names, label="Class Label", multiselect=False)
|
84 |
b3 = gr.Button("Save and change the label using dropdown")
|
85 |
|
|
|
|
|
86 |
multiple_inputs.upload(show_to_gallery, inputs=multiple_inputs, outputs=[gallery, imgs])
|
87 |
|
88 |
gallery.select(get_select_index, None, selected)
|
@@ -95,23 +97,39 @@ with demo as app:
|
|
95 |
|
96 |
b3.click(change_labels, [imgs, selected, images_label], [imgs, gallery])
|
97 |
|
|
|
98 |
b4 = gr.Button("Upload to metadata")
|
99 |
|
100 |
def upload_metadata(imgs):
|
101 |
-
|
|
|
|
|
|
|
102 |
# Create a CSV writer
|
103 |
csv_writer = csv.writer(csv_file)
|
104 |
|
105 |
# Write the header row
|
106 |
-
csv_writer.writerow(['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Write the data rows
|
109 |
csv_writer.writerows(imgs)
|
110 |
|
111 |
print(f"Metadata CSV file has been created.")
|
112 |
-
return imgs
|
113 |
|
114 |
-
b4.click(upload_metadata, imgs
|
115 |
|
116 |
|
117 |
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
import csv
|
4 |
+
import datetime
|
5 |
|
6 |
class_names = ['cat', 'dog']
|
7 |
|
8 |
def update_dropdown(className):
|
9 |
class_names.append(className)
|
10 |
updated_choices = gr.Dropdown(choices=class_names)
|
11 |
+
return updated_choices, updated_choices
|
12 |
|
13 |
def show_picked_class(className):
|
14 |
return className
|
|
|
28 |
|
29 |
labeled_result = {name:score for name, score in zip(class_names, normalized_percentages)}
|
30 |
|
31 |
+
return labeled_result
|
32 |
|
33 |
demo = gr.Blocks()
|
34 |
|
|
|
51 |
b2 = gr.Button("Show me the picked class")
|
52 |
picked_class = gr.Textbox()
|
53 |
|
|
|
54 |
b2.click(show_picked_class, inputs=text_options, outputs=picked_class)
|
55 |
|
56 |
+
process_btn.click(image_classifier, inputs=inp_img, outputs=out_txt)
|
57 |
clear_btn.click(lambda:(
|
58 |
gr.update(value=None),
|
59 |
gr.update(value=None)
|
|
|
83 |
images_label = gr.Dropdown(class_names, label="Class Label", multiselect=False)
|
84 |
b3 = gr.Button("Save and change the label using dropdown")
|
85 |
|
86 |
+
b1.click(update_dropdown, inputs=text_input, outputs=[text_options, images_label])
|
87 |
+
|
88 |
multiple_inputs.upload(show_to_gallery, inputs=multiple_inputs, outputs=[gallery, imgs])
|
89 |
|
90 |
gallery.select(get_select_index, None, selected)
|
|
|
97 |
|
98 |
b3.click(change_labels, [imgs, selected, images_label], [imgs, gallery])
|
99 |
|
100 |
+
gr.Markdown('### Save Metadata Into .csv')
|
101 |
b4 = gr.Button("Upload to metadata")
|
102 |
|
103 |
def upload_metadata(imgs):
|
104 |
+
time_uploaded = datetime.datetime.now()
|
105 |
+
time_str = time_uploaded.strftime("%m-%d-%Y_%H-%M-%S")
|
106 |
+
|
107 |
+
with open(f'{time_str}.csv', mode='w', newline='') as csv_file:
|
108 |
# Create a CSV writer
|
109 |
csv_writer = csv.writer(csv_file)
|
110 |
|
111 |
# Write the header row
|
112 |
+
csv_writer.writerow(['image_path', 'ground_truth', 'time_uploaded', 'prediction_label', 'prediction_conf'])
|
113 |
+
|
114 |
+
for image in imgs:
|
115 |
+
image.append(time_str)
|
116 |
+
model_output = image_classifier(image)
|
117 |
+
# Sort the label and confidence output in descending order
|
118 |
+
sorted_output = dict(sorted(model_output.items(), key=lambda item: item[1], reverse=True))
|
119 |
+
|
120 |
+
# Extract the label with the highest value
|
121 |
+
label_prediction = next(iter(sorted_output))
|
122 |
+
image.append(label_prediction)
|
123 |
+
|
124 |
+
label_confidence = model_output[label_prediction]
|
125 |
+
image.append(label_confidence)
|
126 |
|
127 |
# Write the data rows
|
128 |
csv_writer.writerows(imgs)
|
129 |
|
130 |
print(f"Metadata CSV file has been created.")
|
|
|
131 |
|
132 |
+
b4.click(upload_metadata, inputs=imgs)
|
133 |
|
134 |
|
135 |
demo.launch(debug=True)
|