Spaces:
Sleeping
Sleeping
Jason Adrian
commited on
Commit
·
70a8ae4
1
Parent(s):
727fc3c
add index.html and other resources
Browse files
figures/Original-ResNet-18-Architecture.png
ADDED
![]() |
figures/ResNet-18.png
ADDED
![]() |
figures/resnet-residual-block-for-resnet18-from-scratch-using-pytorch.png
ADDED
![]() |
figures/resnet18-basic-blocks-1.png
ADDED
![]() |
index.html
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<link rel="stylesheet" href="file/style.css" />
|
5 |
+
<link rel="preconnect" href="https://fonts.googleapis.com" />
|
6 |
+
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin />
|
7 |
+
<link href="https://fonts.googleapis.com/css2?family=Source+Sans+Pro:wght@400;600;700&display=swap" rel="stylesheet" />
|
8 |
+
<title><strong>Body Part Classification</strong></title>
|
9 |
+
</head>
|
10 |
+
<body>
|
11 |
+
<div class="container">
|
12 |
+
<h1 class="title"><strong> Body Part Classification</strong></h1>
|
13 |
+
<h2 class="subtitle"><strong>Kalbe Digital Lab</strong></h2>
|
14 |
+
<section class="overview">
|
15 |
+
<div class="grid-container">
|
16 |
+
<h3 class="overview-heading"><span class="vl">Overview</span></h3>
|
17 |
+
<p class="overview-content">
|
18 |
+
The Body Part Classification program serves the critical purpose of categorizing body parts from DICOM x-ray scans into five distinct classes: abdominal, adult chest, pediatric chest, spine, and others. This program trained using ResNet18 model.
|
19 |
+
</p>
|
20 |
+
</div>
|
21 |
+
<div class="grid-container">
|
22 |
+
<h3 class="overview-heading"><span class="vl">Dataset</span></h3>
|
23 |
+
<div>
|
24 |
+
<p class="overview-content">
|
25 |
+
The program has been meticulously trained on a robust and diverse dataset, specifically <a href="https://vindr.ai/datasets/bodypartxr" target="_blank">VinDrBodyPartXR Dataset.</a>.
|
26 |
+
<br/>
|
27 |
+
This dataset is introduced by Vingroup of Big Data Institute which include 16,093 x-ray images that are collected and manually annotated. It is a highly valuable resource that has been instrumental in the training of our model.
|
28 |
+
</p>
|
29 |
+
<ul>
|
30 |
+
<li>Objective: Body Part Identification</li>
|
31 |
+
<li>Task: Classification</li>
|
32 |
+
<li>Modality: Grayscale Images</li>
|
33 |
+
</ul>
|
34 |
+
</div>
|
35 |
+
</div>
|
36 |
+
<div class="grid-container">
|
37 |
+
<h3 class="overview-heading"><span class="vl">Model Architecture</span></h3>
|
38 |
+
<div>
|
39 |
+
<p class="overview-content">
|
40 |
+
The model architecture of ResNet18 to train x-ray images for classifying body part.
|
41 |
+
</p>
|
42 |
+
<img class="content-image" src="file/figures/ResNet-18.png" alt="model-architecture" width="425" height="115" style="vertical-align:middle" />
|
43 |
+
</div>
|
44 |
+
</div>
|
45 |
+
</section>
|
46 |
+
<h3 class="overview-heading"><span class="vl">Demo</span></h3>
|
47 |
+
<p class="overview-content">Please select or upload a body part x-ray scan image to see the capabilities of body part classification with this model</p>
|
48 |
+
</div>
|
49 |
+
</body>
|
50 |
+
</html>
|
style.css
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* {
|
2 |
+
box-sizing: border-box;
|
3 |
+
}
|
4 |
+
|
5 |
+
body {
|
6 |
+
font-family: 'Source Sans Pro', sans-serif;
|
7 |
+
font-size: 16px;
|
8 |
+
}
|
9 |
+
|
10 |
+
.container {
|
11 |
+
width: 100%;
|
12 |
+
margin: 0 auto;
|
13 |
+
}
|
14 |
+
|
15 |
+
.title {
|
16 |
+
font-size: 24px !important;
|
17 |
+
font-weight: 600 !important;
|
18 |
+
letter-spacing: 0em;
|
19 |
+
text-align: center;
|
20 |
+
color: #374159 !important;
|
21 |
+
}
|
22 |
+
|
23 |
+
.subtitle {
|
24 |
+
font-size: 24px !important;
|
25 |
+
font-style: italic;
|
26 |
+
font-weight: 400 !important;
|
27 |
+
letter-spacing: 0em;
|
28 |
+
text-align: center;
|
29 |
+
color: #1d652a !important;
|
30 |
+
padding-bottom: 0.5em;
|
31 |
+
}
|
32 |
+
|
33 |
+
.overview-heading {
|
34 |
+
font-size: 24px !important;
|
35 |
+
font-weight: 600 !important;
|
36 |
+
letter-spacing: 0em;
|
37 |
+
text-align: left;
|
38 |
+
}
|
39 |
+
|
40 |
+
.overview-content {
|
41 |
+
font-size: 14px !important;
|
42 |
+
font-weight: 400 !important;
|
43 |
+
line-height: 30px !important;
|
44 |
+
letter-spacing: 0em;
|
45 |
+
text-align: left;
|
46 |
+
}
|
47 |
+
|
48 |
+
.content-image {
|
49 |
+
width: 100% !important;
|
50 |
+
height: auto !important;
|
51 |
+
}
|
52 |
+
|
53 |
+
.vl {
|
54 |
+
border-left: 5px solid #1d652a;
|
55 |
+
padding-left: 20px;
|
56 |
+
color: #1d652a !important;
|
57 |
+
}
|
58 |
+
|
59 |
+
.grid-container {
|
60 |
+
display: grid;
|
61 |
+
grid-template-columns: 1fr 2fr;
|
62 |
+
gap: 20px;
|
63 |
+
align-items: flex-start;
|
64 |
+
margin-bottom: 0.7em;
|
65 |
+
}
|
66 |
+
|
67 |
+
.grid-container:nth-child(2) {
|
68 |
+
align-items: center;
|
69 |
+
}
|
70 |
+
|
71 |
+
@media screen and (max-width: 768px) {
|
72 |
+
.container {
|
73 |
+
width: 90%;
|
74 |
+
}
|
75 |
+
|
76 |
+
.grid-container {
|
77 |
+
display: block;
|
78 |
+
}
|
79 |
+
|
80 |
+
.overview-heading {
|
81 |
+
font-size: 18px !important;
|
82 |
+
}
|
83 |
+
}
|