Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,20 +1,36 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
-
from diffusers import
|
| 5 |
import torch
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 8 |
|
| 9 |
if torch.cuda.is_available():
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
| 12 |
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
pipe = pipe.to(device)
|
| 14 |
else:
|
| 15 |
-
pipe =
|
|
|
|
|
|
|
|
|
|
| 16 |
pipe = pipe.to(device)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
MAX_IMAGE_SIZE = 1024
|
| 20 |
|
|
@@ -38,9 +54,9 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
| 38 |
return image
|
| 39 |
|
| 40 |
examples = [
|
| 41 |
-
"
|
| 42 |
-
"
|
| 43 |
-
"A
|
| 44 |
]
|
| 45 |
|
| 46 |
css="""
|
|
@@ -79,13 +95,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 79 |
|
| 80 |
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
|
| 82 |
-
negative_prompt = gr.Text(
|
| 83 |
-
label="Negative prompt",
|
| 84 |
-
max_lines=1,
|
| 85 |
-
placeholder="Enter a negative prompt",
|
| 86 |
-
visible=False,
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
seed = gr.Slider(
|
| 90 |
label="Seed",
|
| 91 |
minimum=0,
|
|
@@ -96,34 +105,10 @@ with gr.Blocks(css=css) as demo:
|
|
| 96 |
|
| 97 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
width = gr.Slider(
|
| 102 |
-
label="Width",
|
| 103 |
-
minimum=256,
|
| 104 |
-
maximum=MAX_IMAGE_SIZE,
|
| 105 |
-
step=32,
|
| 106 |
-
value=512,
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
height = gr.Slider(
|
| 110 |
-
label="Height",
|
| 111 |
-
minimum=256,
|
| 112 |
-
maximum=MAX_IMAGE_SIZE,
|
| 113 |
-
step=32,
|
| 114 |
-
value=512,
|
| 115 |
-
)
|
| 116 |
|
| 117 |
with gr.Row():
|
| 118 |
|
| 119 |
-
guidance_scale = gr.Slider(
|
| 120 |
-
label="Guidance scale",
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
-
)
|
| 126 |
-
|
| 127 |
num_inference_steps = gr.Slider(
|
| 128 |
label="Number of inference steps",
|
| 129 |
minimum=1,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
from diffusers import StableDiffusionPipeline, LCMScheduler
|
| 5 |
import torch
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
adapter_id = "jasperai/flash-sd"
|
| 9 |
|
| 10 |
if torch.cuda.is_available():
|
| 11 |
torch.cuda.max_memory_allocated(device=device)
|
| 12 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 13 |
+
"runwayml/stable-diffusion-v1-5",
|
| 14 |
+
use_safetensors=True,
|
| 15 |
+
)
|
| 16 |
pipe.enable_xformers_memory_efficient_attention()
|
| 17 |
pipe = pipe.to(device)
|
| 18 |
else:
|
| 19 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 20 |
+
"runwayml/stable-diffusion-v1-5",
|
| 21 |
+
use_safetensors=True,
|
| 22 |
+
)
|
| 23 |
pipe = pipe.to(device)
|
| 24 |
|
| 25 |
+
pipe.scheduler = LCMScheduler.from_pretrained(
|
| 26 |
+
"runwayml/stable-diffusion-v1-5",
|
| 27 |
+
subfolder="scheduler",
|
| 28 |
+
timestep_spacing="trailing",
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
pipe.load_lora_weights(adapter_id)
|
| 32 |
+
pipe.fuse_lora()
|
| 33 |
+
|
| 34 |
MAX_SEED = np.iinfo(np.int32).max
|
| 35 |
MAX_IMAGE_SIZE = 1024
|
| 36 |
|
|
|
|
| 54 |
return image
|
| 55 |
|
| 56 |
examples = [
|
| 57 |
+
"The image showcases a freshly baked bread, possibly focaccia, with rosemary sprigs and red pepper flakes sprinkled on top. It's sliced and placed on a wire cooling rack, with a bowl of mixed peppercorns beside it.",
|
| 58 |
+
"A raccoon reading a book in a lush forest.",
|
| 59 |
+
"A serene landscape showcases a winding road alongside a vast, turquoise lake, flanked by majestic snow-capped mountains under a partly cloudy sky.",
|
| 60 |
]
|
| 61 |
|
| 62 |
css="""
|
|
|
|
| 95 |
|
| 96 |
with gr.Accordion("Advanced Settings", open=False):
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
seed = gr.Slider(
|
| 99 |
label="Seed",
|
| 100 |
minimum=0,
|
|
|
|
| 105 |
|
| 106 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 107 |
|
| 108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
with gr.Row():
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
num_inference_steps = gr.Slider(
|
| 113 |
label="Number of inference steps",
|
| 114 |
minimum=1,
|