text-completion / app.py
Quentin GALLOUÉDEC
title
e74f212
raw
history blame
1.73 kB
import gradio as gr
from transformers import pipeline
from huggingface_hub import HfApi, ModelFilter
# Get the list of models from the Hugging Face Hub
api = HfApi()
models = api.list_models(author="gia-project", filter=ModelFilter(tags="text-generation"))
models_names = [model.modelId for model in models]
# Dictionary to store loaded models and their pipelines
model_pipelines = {}
# Load a default model initially
default_model_name = "gia-project/gia2-small-untrained"
default_generator = pipeline("text-generation", model=default_model_name, trust_remote_code=True)
model_pipelines[default_model_name] = default_generator
def generate_text(model_name, input_text):
# Check if the selected model is already loaded
if model_name not in model_pipelines:
# Load the model and create a pipeline if it's not already loaded
generator = pipeline("text-generation", model=model_name, trust_remote_code=True)
model_pipelines[model_name] = generator
# Get the pipeline for the selected model and generate text
generator = model_pipelines[model_name]
generated_text = generator(input_text)[0]['generated_text']
return generated_text
# Define the Gradio interface
iface = gr.Interface(
fn=generate_text, # Function to be called on user input
inputs=[
gr.inputs.Dropdown(choices=models_names, label="Select Model", default=default_model_name), # Dropdown to select model
gr.inputs.Textbox(lines=5, label="Input Text") # Textbox for entering text
],
outputs=gr.outputs.Textbox(label="Generated Text"), # Textbox to display the generated text
title="GIA Text Generation", # Title of the interface
)
# Launch the Gradio interface
iface.launch()