Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
import json
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import math
|
9 |
+
|
10 |
+
# Define the model architecture
|
11 |
+
class SmolLM2Config(PretrainedConfig):
|
12 |
+
model_type = "smollm2"
|
13 |
+
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
vocab_size=49152,
|
17 |
+
hidden_size=576,
|
18 |
+
intermediate_size=1536,
|
19 |
+
num_hidden_layers=30,
|
20 |
+
num_attention_heads=9,
|
21 |
+
num_key_value_heads=3,
|
22 |
+
hidden_act="silu",
|
23 |
+
max_position_embeddings=2048,
|
24 |
+
initializer_range=0.041666666666666664,
|
25 |
+
rms_norm_eps=1e-5,
|
26 |
+
use_cache=True,
|
27 |
+
pad_token_id=None,
|
28 |
+
bos_token_id=0,
|
29 |
+
eos_token_id=0,
|
30 |
+
tie_word_embeddings=True,
|
31 |
+
rope_theta=10000.0,
|
32 |
+
**kwargs
|
33 |
+
):
|
34 |
+
self.vocab_size = vocab_size
|
35 |
+
self.hidden_size = hidden_size
|
36 |
+
self.intermediate_size = intermediate_size
|
37 |
+
self.num_hidden_layers = num_hidden_layers
|
38 |
+
self.num_attention_heads = num_attention_heads
|
39 |
+
self.num_key_value_heads = num_key_value_heads
|
40 |
+
self.hidden_act = hidden_act
|
41 |
+
self.max_position_embeddings = max_position_embeddings
|
42 |
+
self.initializer_range = initializer_range
|
43 |
+
self.rms_norm_eps = rms_norm_eps
|
44 |
+
self.use_cache = use_cache
|
45 |
+
self.rope_theta = rope_theta
|
46 |
+
super().__init__(
|
47 |
+
pad_token_id=pad_token_id,
|
48 |
+
bos_token_id=bos_token_id,
|
49 |
+
eos_token_id=eos_token_id,
|
50 |
+
tie_word_embeddings=tie_word_embeddings,
|
51 |
+
**kwargs
|
52 |
+
)
|
53 |
+
|
54 |
+
# Register the model architecture
|
55 |
+
from transformers import AutoConfig
|
56 |
+
AutoConfig.register("smollm2", SmolLM2Config)
|
57 |
+
|
58 |
+
class RMSNorm(nn.Module):
|
59 |
+
def __init__(self, hidden_size, eps=1e-5):
|
60 |
+
super().__init__()
|
61 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
62 |
+
self.eps = eps
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
66 |
+
x = x * torch.rsqrt(variance + self.eps)
|
67 |
+
return self.weight * x
|
68 |
+
|
69 |
+
def precompute_rope_frequencies(dim: int, max_position_embeddings: int, theta: float = 10000.0):
|
70 |
+
position = torch.arange(max_position_embeddings).unsqueeze(1) # [seq_len, 1]
|
71 |
+
div_term = theta ** (torch.arange(0, dim, 2).float() / dim) # [dim/2]
|
72 |
+
freqs = position / div_term # [seq_len, dim/2]
|
73 |
+
return freqs
|
74 |
+
|
75 |
+
def apply_rotary_embeddings(x: torch.Tensor, freqs: torch.Tensor):
|
76 |
+
# x shape: [batch, seq_len, heads, head_dim]
|
77 |
+
# freqs shape: [seq_len, head_dim/2]
|
78 |
+
x_rot = x.float()
|
79 |
+
|
80 |
+
# Reshape freqs to match x's dimensions
|
81 |
+
freqs = freqs.unsqueeze(0).unsqueeze(2) # [1, seq_len, 1, dim/2]
|
82 |
+
|
83 |
+
# Split channels for rotation
|
84 |
+
x1, x2 = x_rot[..., :x_rot.shape[-1]//2], x_rot[..., x_rot.shape[-1]//2:]
|
85 |
+
|
86 |
+
# Apply rotary embeddings
|
87 |
+
cos = torch.cos(freqs).to(x.device)
|
88 |
+
sin = torch.sin(freqs).to(x.device)
|
89 |
+
|
90 |
+
# Ensure broadcasting dimensions match
|
91 |
+
cos = cos.expand_as(x1)
|
92 |
+
sin = sin.expand_as(x1)
|
93 |
+
|
94 |
+
# Rotate x1 and x2
|
95 |
+
x1_rot = x1 * cos - x2 * sin
|
96 |
+
x2_rot = x2 * cos + x1 * sin
|
97 |
+
|
98 |
+
# Concatenate back
|
99 |
+
return torch.cat([x1_rot, x2_rot], dim=-1).to(x.dtype)
|
100 |
+
|
101 |
+
class LlamaAttention(nn.Module):
|
102 |
+
def __init__(self, config: SmolLM2Config):
|
103 |
+
super().__init__()
|
104 |
+
self.hidden_size = config.hidden_size
|
105 |
+
self.num_heads = config.num_attention_heads
|
106 |
+
self.num_kv_heads = config.num_key_value_heads
|
107 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
108 |
+
|
109 |
+
# Adjust projections to match head dimensions
|
110 |
+
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
|
111 |
+
self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
|
112 |
+
self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
|
113 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
|
114 |
+
|
115 |
+
# Initialize rotary embeddings
|
116 |
+
self.register_buffer(
|
117 |
+
"rope_freqs",
|
118 |
+
precompute_rope_frequencies(
|
119 |
+
self.head_dim, # Use full head_dim for frequencies
|
120 |
+
config.max_position_embeddings,
|
121 |
+
config.rope_theta
|
122 |
+
),
|
123 |
+
persistent=False
|
124 |
+
)
|
125 |
+
|
126 |
+
def forward(self, hidden_states, attention_mask=None):
|
127 |
+
batch_size, seq_length, _ = hidden_states.size()
|
128 |
+
|
129 |
+
# Project and reshape
|
130 |
+
q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
|
131 |
+
k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
|
132 |
+
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
|
133 |
+
|
134 |
+
# Apply rotary embeddings
|
135 |
+
q = apply_rotary_embeddings(q, self.rope_freqs[:seq_length])
|
136 |
+
k = apply_rotary_embeddings(k, self.rope_freqs[:seq_length])
|
137 |
+
|
138 |
+
# Repeat k/v heads if num_kv_heads < num_heads
|
139 |
+
if self.num_kv_heads < self.num_heads:
|
140 |
+
k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
|
141 |
+
v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
|
142 |
+
|
143 |
+
# Scaled dot-product attention
|
144 |
+
q = q.transpose(1, 2) # (batch, num_heads, seq_len, head_dim)
|
145 |
+
k = k.transpose(1, 2)
|
146 |
+
v = v.transpose(1, 2)
|
147 |
+
|
148 |
+
attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
149 |
+
|
150 |
+
if attention_mask is not None:
|
151 |
+
attention_scores = attention_scores + attention_mask
|
152 |
+
|
153 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
154 |
+
context = torch.matmul(attention_probs, v)
|
155 |
+
|
156 |
+
context = context.transpose(1, 2).contiguous()
|
157 |
+
context = context.view(batch_size, seq_length, -1)
|
158 |
+
|
159 |
+
return self.o_proj(context)
|
160 |
+
|
161 |
+
class LlamaMLP(nn.Module):
|
162 |
+
def __init__(self, config: SmolLM2Config):
|
163 |
+
super().__init__()
|
164 |
+
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
165 |
+
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
|
166 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
167 |
+
self.act_fn = nn.SiLU()
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
gate = self.act_fn(self.gate_proj(x))
|
171 |
+
up = self.up_proj(x)
|
172 |
+
return self.down_proj(gate * up)
|
173 |
+
|
174 |
+
class LlamaDecoderLayer(nn.Module):
|
175 |
+
def __init__(self, config: SmolLM2Config):
|
176 |
+
super().__init__()
|
177 |
+
self.self_attn = LlamaAttention(config)
|
178 |
+
self.mlp = LlamaMLP(config)
|
179 |
+
self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
180 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
181 |
+
|
182 |
+
def forward(self, hidden_states, attention_mask=None):
|
183 |
+
residual = hidden_states
|
184 |
+
hidden_states = self.input_layernorm(hidden_states)
|
185 |
+
hidden_states = self.self_attn(hidden_states, attention_mask)
|
186 |
+
hidden_states = residual + hidden_states
|
187 |
+
|
188 |
+
residual = hidden_states
|
189 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
190 |
+
hidden_states = self.mlp(hidden_states)
|
191 |
+
hidden_states = residual + hidden_states
|
192 |
+
|
193 |
+
return hidden_states
|
194 |
+
|
195 |
+
class SmolLM2ForCausalLM(PreTrainedModel):
|
196 |
+
config_class = SmolLM2Config
|
197 |
+
|
198 |
+
def __init__(self, config):
|
199 |
+
super().__init__(config)
|
200 |
+
self.config = config
|
201 |
+
|
202 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
203 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
204 |
+
self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
205 |
+
|
206 |
+
# Add lm_head before weight tying
|
207 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
208 |
+
|
209 |
+
# Initialize weights
|
210 |
+
self.apply(self._init_weights)
|
211 |
+
|
212 |
+
# Tie weights if configured
|
213 |
+
if config.tie_word_embeddings:
|
214 |
+
self.lm_head.weight = self.embed_tokens.weight
|
215 |
+
|
216 |
+
def _init_weights(self, module):
|
217 |
+
if isinstance(module, nn.Linear):
|
218 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
219 |
+
if module.bias is not None:
|
220 |
+
torch.nn.init.zeros_(module.bias)
|
221 |
+
elif isinstance(module, nn.Embedding):
|
222 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
223 |
+
|
224 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
225 |
+
hidden_states = self.embed_tokens(input_ids)
|
226 |
+
|
227 |
+
# Create causal attention mask if none provided
|
228 |
+
if attention_mask is None:
|
229 |
+
# Create causal mask
|
230 |
+
seq_length = input_ids.size(1)
|
231 |
+
# [batch_size, 1, seq_length, seq_length]
|
232 |
+
causal_mask = torch.triu(
|
233 |
+
torch.ones((seq_length, seq_length), dtype=torch.bool, device=input_ids.device),
|
234 |
+
diagonal=1
|
235 |
+
).unsqueeze(0).unsqueeze(0)
|
236 |
+
attention_mask = torch.zeros(
|
237 |
+
(1, 1, seq_length, seq_length),
|
238 |
+
dtype=hidden_states.dtype,
|
239 |
+
device=hidden_states.device
|
240 |
+
)
|
241 |
+
attention_mask.masked_fill_(causal_mask, float("-inf"))
|
242 |
+
|
243 |
+
for layer in self.layers:
|
244 |
+
hidden_states = layer(hidden_states, attention_mask)
|
245 |
+
|
246 |
+
hidden_states = self.norm(hidden_states)
|
247 |
+
logits = self.lm_head(hidden_states)
|
248 |
+
|
249 |
+
loss = None
|
250 |
+
if labels is not None:
|
251 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
|
252 |
+
|
253 |
+
return logits if loss is None else (loss, logits)
|
254 |
+
|
255 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
256 |
+
return {
|
257 |
+
"input_ids": input_ids,
|
258 |
+
"attention_mask": kwargs.get("attention_mask", None)
|
259 |
+
}
|
260 |
+
|
261 |
+
def generate(
|
262 |
+
self,
|
263 |
+
input_ids,
|
264 |
+
max_length=100,
|
265 |
+
temperature=0.7,
|
266 |
+
top_k=50,
|
267 |
+
do_sample=True,
|
268 |
+
num_return_sequences=1,
|
269 |
+
pad_token_id=None,
|
270 |
+
eos_token_id=None,
|
271 |
+
**kwargs
|
272 |
+
):
|
273 |
+
cur_len = input_ids.shape[1]
|
274 |
+
batch_size = input_ids.shape[0]
|
275 |
+
|
276 |
+
if max_length < cur_len:
|
277 |
+
max_length = cur_len
|
278 |
+
|
279 |
+
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
280 |
+
|
281 |
+
while cur_len < max_length:
|
282 |
+
# Prepare model inputs
|
283 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids)
|
284 |
+
|
285 |
+
# Forward pass
|
286 |
+
with torch.no_grad():
|
287 |
+
outputs = self(**model_inputs)
|
288 |
+
next_token_logits = outputs[:, -1, :]
|
289 |
+
|
290 |
+
# Temperature scaling
|
291 |
+
if temperature != 1.0 and temperature > 0:
|
292 |
+
next_token_logits = next_token_logits / temperature
|
293 |
+
|
294 |
+
# Top-k filtering
|
295 |
+
if top_k > 0:
|
296 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
297 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
298 |
+
|
299 |
+
# Sample or greedy
|
300 |
+
if do_sample:
|
301 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
302 |
+
next_tokens = torch.multinomial(probs, num_samples=1)
|
303 |
+
else:
|
304 |
+
next_tokens = torch.argmax(next_token_logits, dim=-1)
|
305 |
+
next_tokens = next_tokens.unsqueeze(-1)
|
306 |
+
|
307 |
+
# Append next tokens
|
308 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
309 |
+
cur_len = input_ids.shape[1]
|
310 |
+
|
311 |
+
# Early stopping if all sequences have reached the EOS token
|
312 |
+
if eos_token_id is not None:
|
313 |
+
unfinished_sequences = unfinished_sequences.mul(
|
314 |
+
next_tokens.squeeze(-1).ne(eos_token_id).long()
|
315 |
+
)
|
316 |
+
if unfinished_sequences.max() == 0:
|
317 |
+
break
|
318 |
+
|
319 |
+
return input_ids
|
320 |
+
|
321 |
+
# Register the model
|
322 |
+
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
|
323 |
+
|
324 |
+
# Cache for model and tokenizer
|
325 |
+
MODEL = None
|
326 |
+
TOKENIZER = None
|
327 |
+
CONFIG = None
|
328 |
+
|
329 |
+
def initialize():
|
330 |
+
global MODEL, TOKENIZER, CONFIG
|
331 |
+
|
332 |
+
if MODEL is None:
|
333 |
+
print("Loading model and tokenizer...")
|
334 |
+
model_id = "jatingocodeo/SmolLM2"
|
335 |
+
|
336 |
+
try:
|
337 |
+
# Download and load config
|
338 |
+
print("Loading config...")
|
339 |
+
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
|
340 |
+
with open(config_path, 'r') as f:
|
341 |
+
config_dict = json.load(f)
|
342 |
+
CONFIG = SmolLM2Config(**config_dict)
|
343 |
+
|
344 |
+
# Load tokenizer
|
345 |
+
print("Loading tokenizer...")
|
346 |
+
TOKENIZER = AutoTokenizer.from_pretrained(
|
347 |
+
model_id,
|
348 |
+
model_max_length=CONFIG.max_position_embeddings,
|
349 |
+
padding_side="left",
|
350 |
+
truncation_side="left",
|
351 |
+
trust_remote_code=True
|
352 |
+
)
|
353 |
+
|
354 |
+
# Make sure we're using the correct special tokens
|
355 |
+
special_tokens = {
|
356 |
+
'bos_token': '<|endoftext|>',
|
357 |
+
'eos_token': '<|endoftext|>',
|
358 |
+
'unk_token': '<|endoftext|>',
|
359 |
+
'pad_token': '<|endoftext|>' # Using endoftext as pad token since it's not specified
|
360 |
+
}
|
361 |
+
TOKENIZER.add_special_tokens(special_tokens)
|
362 |
+
|
363 |
+
# Load model weights
|
364 |
+
print("Loading model...")
|
365 |
+
weights_path = hf_hub_download(repo_id=model_id, filename="pytorch_model.bin")
|
366 |
+
|
367 |
+
# Initialize model
|
368 |
+
MODEL = SmolLM2ForCausalLM(CONFIG)
|
369 |
+
|
370 |
+
# Resize token embeddings to match tokenizer
|
371 |
+
MODEL.resize_token_embeddings(len(TOKENIZER))
|
372 |
+
|
373 |
+
# Load state dict
|
374 |
+
state_dict = torch.load(weights_path, map_location="cpu")
|
375 |
+
MODEL.load_state_dict(state_dict)
|
376 |
+
|
377 |
+
# Move model to device
|
378 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
379 |
+
MODEL = MODEL.to(device)
|
380 |
+
|
381 |
+
print(f"Model loaded successfully on {device}")
|
382 |
+
|
383 |
+
except Exception as e:
|
384 |
+
print(f"Error initializing: {str(e)}")
|
385 |
+
raise
|
386 |
+
|
387 |
+
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
388 |
+
# Initialize if not already done
|
389 |
+
if MODEL is None:
|
390 |
+
try:
|
391 |
+
initialize()
|
392 |
+
except Exception as e:
|
393 |
+
return f"Failed to initialize model: {str(e)}"
|
394 |
+
|
395 |
+
try:
|
396 |
+
# Process prompt
|
397 |
+
if not prompt.strip():
|
398 |
+
return "Please enter a prompt."
|
399 |
+
|
400 |
+
# Add BOS token if needed
|
401 |
+
if not prompt.startswith(TOKENIZER.bos_token):
|
402 |
+
prompt = TOKENIZER.bos_token + prompt
|
403 |
+
|
404 |
+
# Encode prompt
|
405 |
+
encoded = TOKENIZER.encode_plus(
|
406 |
+
prompt,
|
407 |
+
add_special_tokens=True,
|
408 |
+
return_tensors="pt",
|
409 |
+
padding=True,
|
410 |
+
truncation=True,
|
411 |
+
max_length=CONFIG.max_position_embeddings
|
412 |
+
)
|
413 |
+
input_ids = encoded["input_ids"].to(MODEL.device)
|
414 |
+
attention_mask = encoded["attention_mask"].to(MODEL.device)
|
415 |
+
|
416 |
+
# Generate
|
417 |
+
with torch.no_grad():
|
418 |
+
outputs = MODEL.generate(
|
419 |
+
input_ids,
|
420 |
+
attention_mask=attention_mask,
|
421 |
+
max_length=min(max_length + len(input_ids[0]), CONFIG.max_position_embeddings),
|
422 |
+
temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature
|
423 |
+
top_k=max(1, min(top_k, 100)), # Clamp top_k
|
424 |
+
do_sample=True if temperature > 0 else False,
|
425 |
+
num_return_sequences=1,
|
426 |
+
pad_token_id=TOKENIZER.pad_token_id,
|
427 |
+
eos_token_id=TOKENIZER.eos_token_id,
|
428 |
+
)
|
429 |
+
|
430 |
+
# Decode and return
|
431 |
+
generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True)
|
432 |
+
return generated_text.strip()
|
433 |
+
|
434 |
+
except Exception as e:
|
435 |
+
import traceback
|
436 |
+
traceback.print_exc()
|
437 |
+
return f"Error during text generation: {str(e)}"
|
438 |
+
|
439 |
+
# Create Gradio interface
|
440 |
+
iface = gr.Interface(
|
441 |
+
fn=generate_text,
|
442 |
+
inputs=[
|
443 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
|
444 |
+
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
|
445 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
446 |
+
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
|
447 |
+
],
|
448 |
+
outputs=gr.Textbox(label="Generated Text", lines=5),
|
449 |
+
title="SmolLM2 Text Generator",
|
450 |
+
description="Generate text using the fine-tuned SmolLM2 model. Adjust parameters to control the generation.",
|
451 |
+
examples=[
|
452 |
+
["Once upon a time", 100, 0.7, 50],
|
453 |
+
["The quick brown fox", 150, 0.8, 40],
|
454 |
+
],
|
455 |
+
allow_flagging="never"
|
456 |
+
)
|
457 |
+
|
458 |
+
# Initialize on startup
|
459 |
+
try:
|
460 |
+
initialize()
|
461 |
+
except Exception as e:
|
462 |
+
print(f"Warning: Model initialization failed: {str(e)}")
|
463 |
+
print("Model will be initialized on first request")
|
464 |
+
|
465 |
+
if __name__ == "__main__":
|
466 |
+
iface.launch()
|