SmolLM2 / app.py
jatingocodeo's picture
Update app.py
1a1fb0e verified
raw
history blame
3.97 kB
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import hf_hub_download
import json
# Cache for model and tokenizer
MODEL = None
TOKENIZER = None
def initialize():
global MODEL, TOKENIZER
if MODEL is None:
print("Loading model and tokenizer...")
model_id = "jatingocodeo/SmolLM2"
try:
# Download model files from HF Hub
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
# Load tokenizer
print("Loading tokenizer...")
TOKENIZER = AutoTokenizer.from_pretrained(model_id)
# Add special tokens if needed
special_tokens = {
'pad_token': '[PAD]',
'eos_token': '</s>',
'bos_token': '<s>'
}
TOKENIZER.add_special_tokens(special_tokens)
# Load model
print("Loading model...")
MODEL = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Move model to device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL.to(device)
print(f"Model loaded successfully on {device}")
except Exception as e:
print(f"Error initializing: {str(e)}")
raise
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
# Initialize if not already done
if MODEL is None:
initialize()
try:
# Process prompt
if not prompt.strip():
return "Please enter a prompt."
# Add BOS token if needed
if not prompt.startswith(TOKENIZER.bos_token):
prompt = TOKENIZER.bos_token + prompt
# Encode prompt
input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
input_ids = input_ids.to(MODEL.device)
# Generate
with torch.no_grad():
outputs = MODEL.generate(
input_ids,
max_length=min(max_length + len(input_ids[0]), 2048),
temperature=temperature,
top_k=top_k,
do_sample=True,
pad_token_id=TOKENIZER.pad_token_id,
eos_token_id=TOKENIZER.eos_token_id,
num_return_sequences=1
)
# Decode and return
generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True)
return generated_text.strip()
except Exception as e:
print(f"Error generating text: {str(e)}")
return f"An error occurred: {str(e)}"
# Create Gradio interface
iface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
],
outputs=gr.Textbox(label="Generated Text", lines=5),
title="SmolLM2 Text Generator",
description="""Generate text using the fine-tuned SmolLM2 model.
- Max Length: Controls the length of generated text
- Temperature: Controls randomness (higher = more creative)
- Top K: Controls diversity of word choices""",
examples=[
["Once upon a time", 100, 0.7, 50],
["The quick brown fox", 150, 0.8, 40],
["In a galaxy far far away", 200, 0.9, 30],
],
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()