Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig | |
from huggingface_hub import hf_hub_download | |
import json | |
# Define the model architecture | |
class SmolLM2Config(PretrainedConfig): | |
model_type = "smollm2" | |
def __init__( | |
self, | |
vocab_size=49152, | |
hidden_size=576, | |
intermediate_size=1536, | |
num_hidden_layers=30, | |
num_attention_heads=9, | |
num_key_value_heads=3, | |
hidden_act="silu", | |
max_position_embeddings=2048, | |
initializer_range=0.02, | |
rms_norm_eps=1e-5, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=0, | |
eos_token_id=0, | |
tie_word_embeddings=True, | |
**kwargs | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.max_position_embeddings = max_position_embeddings | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.use_cache = use_cache | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs | |
) | |
# Register the model architecture | |
from transformers import AutoConfig | |
AutoConfig.register("smollm2", SmolLM2Config) | |
class SmolLM2ForCausalLM(PreTrainedModel): | |
config_class = SmolLM2Config | |
def __init__(self, config): | |
super().__init__(config) | |
self.config = config | |
# Initialize model weights from your checkpoint | |
self.model = AutoModelForCausalLM.from_pretrained( | |
"jatingocodeo/SmolLM2", | |
config=config, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
) | |
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs): | |
return self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
labels=labels, | |
**kwargs | |
) | |
def prepare_inputs_for_generation(self, input_ids, **kwargs): | |
return self.model.prepare_inputs_for_generation(input_ids, **kwargs) | |
# Register the model | |
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM) | |
# Cache for model and tokenizer | |
MODEL = None | |
TOKENIZER = None | |
def initialize(): | |
global MODEL, TOKENIZER | |
if MODEL is None: | |
print("Loading model and tokenizer...") | |
model_id = "jatingocodeo/SmolLM2" | |
try: | |
# Download and load config | |
print("Loading config...") | |
config_path = hf_hub_download(repo_id=model_id, filename="config.json") | |
with open(config_path, 'r') as f: | |
config_dict = json.load(f) | |
config = SmolLM2Config(**config_dict) | |
# Load tokenizer | |
print("Loading tokenizer...") | |
TOKENIZER = AutoTokenizer.from_pretrained(model_id) | |
# Add special tokens if needed | |
special_tokens = { | |
'pad_token': '[PAD]', | |
'eos_token': '</s>', | |
'bos_token': '<s>' | |
} | |
TOKENIZER.add_special_tokens(special_tokens) | |
# Load model | |
print("Loading model...") | |
MODEL = SmolLM2ForCausalLM.from_pretrained( | |
model_id, | |
config=config, | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
trust_remote_code=True, | |
low_cpu_mem_usage=True | |
) | |
# Move model to device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
MODEL.to(device) | |
print(f"Model loaded successfully on {device}") | |
except Exception as e: | |
print(f"Error initializing: {str(e)}") | |
raise | |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50): | |
# Initialize if not already done | |
if MODEL is None: | |
try: | |
initialize() | |
except Exception as e: | |
return f"Failed to initialize model: {str(e)}" | |
try: | |
# Process prompt | |
if not prompt.strip(): | |
return "Please enter a prompt." | |
# Add BOS token if needed | |
if not prompt.startswith(TOKENIZER.bos_token): | |
prompt = TOKENIZER.bos_token + prompt | |
# Encode prompt | |
input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048) | |
input_ids = input_ids.to(MODEL.device) | |
# Generate | |
with torch.no_grad(): | |
outputs = MODEL.generate( | |
input_ids, | |
max_length=min(max_length + len(input_ids[0]), 2048), | |
temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature | |
top_k=max(1, min(top_k, 100)), # Clamp top_k | |
do_sample=True if temperature > 0 else False, | |
num_return_sequences=1, | |
pad_token_id=TOKENIZER.pad_token_id, | |
eos_token_id=TOKENIZER.eos_token_id, | |
) | |
# Decode and return | |
generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True) | |
return generated_text.strip() | |
except Exception as e: | |
import traceback | |
traceback.print_exc() | |
return f"Error during text generation: {str(e)}" | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2), | |
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"), | |
], | |
outputs=gr.Textbox(label="Generated Text", lines=5), | |
title="SmolLM2 Text Generator", | |
description="Generate text using the fine-tuned SmolLM2 model. Adjust parameters to control the generation.", | |
examples=[ | |
["Once upon a time", 100, 0.7, 50], | |
["The quick brown fox", 150, 0.8, 40], | |
], | |
allow_flagging="never" | |
) | |
# Initialize on startup | |
try: | |
initialize() | |
except Exception as e: | |
print(f"Warning: Model initialization failed: {str(e)}") | |
print("Model will be initialized on first request") | |
if __name__ == "__main__": | |
iface.launch() |