Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -53,6 +53,72 @@ class SmolLM2Config(PretrainedConfig):
|
|
53 |
from transformers import AutoConfig
|
54 |
AutoConfig.register("smollm2", SmolLM2Config)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
class SmolLM2ForCausalLM(PreTrainedModel):
|
57 |
config_class = SmolLM2Config
|
58 |
|
|
|
53 |
from transformers import AutoConfig
|
54 |
AutoConfig.register("smollm2", SmolLM2Config)
|
55 |
|
56 |
+
class RMSNorm(nn.Module):
|
57 |
+
def __init__(self, hidden_size, eps=1e-5):
|
58 |
+
super().__init__()
|
59 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
60 |
+
self.eps = eps
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
64 |
+
x = x * torch.rsqrt(variance + self.eps)
|
65 |
+
return self.weight * x
|
66 |
+
|
67 |
+
class LlamaDecoderLayer(nn.Module):
|
68 |
+
def __init__(self, config):
|
69 |
+
super().__init__()
|
70 |
+
self.hidden_size = config.hidden_size
|
71 |
+
self.num_heads = config.num_attention_heads
|
72 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
73 |
+
|
74 |
+
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
|
75 |
+
self.k_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
|
76 |
+
self.v_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
|
77 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
78 |
+
|
79 |
+
self.mlp = nn.Sequential(
|
80 |
+
nn.Linear(config.hidden_size, config.intermediate_size, bias=False),
|
81 |
+
nn.SiLU(),
|
82 |
+
nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
83 |
+
)
|
84 |
+
|
85 |
+
self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
86 |
+
self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
87 |
+
|
88 |
+
def forward(self, hidden_states, attention_mask=None):
|
89 |
+
# Self Attention
|
90 |
+
residual = hidden_states
|
91 |
+
hidden_states = self.input_layernorm(hidden_states)
|
92 |
+
|
93 |
+
# Reshape for attention
|
94 |
+
batch_size, seq_length, _ = hidden_states.size()
|
95 |
+
q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
96 |
+
k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
97 |
+
v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
98 |
+
|
99 |
+
# Compute attention scores
|
100 |
+
scale = 1.0 / math.sqrt(self.head_dim)
|
101 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) * scale
|
102 |
+
|
103 |
+
if attention_mask is not None:
|
104 |
+
scores = scores + attention_mask
|
105 |
+
|
106 |
+
attn_weights = F.softmax(scores, dim=-1)
|
107 |
+
hidden_states = torch.matmul(attn_weights, v)
|
108 |
+
|
109 |
+
# Reshape back
|
110 |
+
hidden_states = hidden_states.transpose(1, 2).contiguous().view(batch_size, seq_length, -1)
|
111 |
+
hidden_states = self.o_proj(hidden_states)
|
112 |
+
hidden_states = residual + hidden_states
|
113 |
+
|
114 |
+
# MLP
|
115 |
+
residual = hidden_states
|
116 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
117 |
+
hidden_states = self.mlp(hidden_states)
|
118 |
+
hidden_states = residual + hidden_states
|
119 |
+
|
120 |
+
return hidden_states
|
121 |
+
|
122 |
class SmolLM2ForCausalLM(PreTrainedModel):
|
123 |
config_class = SmolLM2Config
|
124 |
|