Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,84 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import json
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Cache for model and tokenizer
|
8 |
MODEL = None
|
9 |
TOKENIZER = None
|
@@ -16,8 +91,12 @@ def initialize():
|
|
16 |
model_id = "jatingocodeo/SmolLM2"
|
17 |
|
18 |
try:
|
19 |
-
# Download
|
|
|
20 |
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
|
|
|
|
|
|
|
21 |
|
22 |
# Load tokenizer
|
23 |
print("Loading tokenizer...")
|
@@ -33,8 +112,9 @@ def initialize():
|
|
33 |
|
34 |
# Load model
|
35 |
print("Loading model...")
|
36 |
-
MODEL =
|
37 |
model_id,
|
|
|
38 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
39 |
trust_remote_code=True,
|
40 |
low_cpu_mem_usage=True
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import json
|
6 |
|
7 |
+
# Define the model architecture
|
8 |
+
class SmolLM2Config(PretrainedConfig):
|
9 |
+
model_type = "smollm2"
|
10 |
+
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
vocab_size=49152,
|
14 |
+
hidden_size=576,
|
15 |
+
intermediate_size=1536,
|
16 |
+
num_hidden_layers=30,
|
17 |
+
num_attention_heads=9,
|
18 |
+
num_key_value_heads=3,
|
19 |
+
hidden_act="silu",
|
20 |
+
max_position_embeddings=2048,
|
21 |
+
initializer_range=0.02,
|
22 |
+
rms_norm_eps=1e-5,
|
23 |
+
use_cache=True,
|
24 |
+
pad_token_id=None,
|
25 |
+
bos_token_id=0,
|
26 |
+
eos_token_id=0,
|
27 |
+
tie_word_embeddings=True,
|
28 |
+
**kwargs
|
29 |
+
):
|
30 |
+
self.vocab_size = vocab_size
|
31 |
+
self.hidden_size = hidden_size
|
32 |
+
self.intermediate_size = intermediate_size
|
33 |
+
self.num_hidden_layers = num_hidden_layers
|
34 |
+
self.num_attention_heads = num_attention_heads
|
35 |
+
self.num_key_value_heads = num_key_value_heads
|
36 |
+
self.hidden_act = hidden_act
|
37 |
+
self.max_position_embeddings = max_position_embeddings
|
38 |
+
self.initializer_range = initializer_range
|
39 |
+
self.rms_norm_eps = rms_norm_eps
|
40 |
+
self.use_cache = use_cache
|
41 |
+
super().__init__(
|
42 |
+
pad_token_id=pad_token_id,
|
43 |
+
bos_token_id=bos_token_id,
|
44 |
+
eos_token_id=eos_token_id,
|
45 |
+
tie_word_embeddings=tie_word_embeddings,
|
46 |
+
**kwargs
|
47 |
+
)
|
48 |
+
|
49 |
+
# Register the model architecture
|
50 |
+
from transformers import AutoConfig
|
51 |
+
AutoConfig.register("smollm2", SmolLM2Config)
|
52 |
+
|
53 |
+
class SmolLM2ForCausalLM(PreTrainedModel):
|
54 |
+
config_class = SmolLM2Config
|
55 |
+
|
56 |
+
def __init__(self, config):
|
57 |
+
super().__init__(config)
|
58 |
+
self.config = config
|
59 |
+
|
60 |
+
# Load the model weights directly from the checkpoint
|
61 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
"meta-llama/Llama-2-7b-hf",
|
63 |
+
config=config,
|
64 |
+
torch_dtype=torch.float16,
|
65 |
+
low_cpu_mem_usage=True
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs):
|
69 |
+
return self.model(
|
70 |
+
input_ids=input_ids,
|
71 |
+
attention_mask=attention_mask,
|
72 |
+
labels=labels,
|
73 |
+
**kwargs
|
74 |
+
)
|
75 |
+
|
76 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
77 |
+
return self.model.prepare_inputs_for_generation(input_ids, **kwargs)
|
78 |
+
|
79 |
+
# Register the model
|
80 |
+
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
|
81 |
+
|
82 |
# Cache for model and tokenizer
|
83 |
MODEL = None
|
84 |
TOKENIZER = None
|
|
|
91 |
model_id = "jatingocodeo/SmolLM2"
|
92 |
|
93 |
try:
|
94 |
+
# Download and load config
|
95 |
+
print("Loading config...")
|
96 |
config_path = hf_hub_download(repo_id=model_id, filename="config.json")
|
97 |
+
with open(config_path, 'r') as f:
|
98 |
+
config_dict = json.load(f)
|
99 |
+
config = SmolLM2Config(**config_dict)
|
100 |
|
101 |
# Load tokenizer
|
102 |
print("Loading tokenizer...")
|
|
|
112 |
|
113 |
# Load model
|
114 |
print("Loading model...")
|
115 |
+
MODEL = SmolLM2ForCausalLM.from_pretrained(
|
116 |
model_id,
|
117 |
+
config=config,
|
118 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
119 |
trust_remote_code=True,
|
120 |
low_cpu_mem_usage=True
|