Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -191,14 +191,53 @@ AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)
|
|
191 |
# Load model and tokenizer
|
192 |
model_id = "jatingocodeo/SmolLM2"
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
def load_model():
|
195 |
try:
|
196 |
print("\n=== Starting model loading process ===")
|
197 |
print(f"Model ID: {model_id}")
|
198 |
|
|
|
|
|
|
|
|
|
|
|
199 |
print("\n1. Loading tokenizer...")
|
200 |
try:
|
201 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
202 |
print("✓ Tokenizer loaded successfully")
|
203 |
print(f"Tokenizer type: {type(tokenizer)}")
|
204 |
print(f"Vocabulary size: {len(tokenizer)}")
|
@@ -235,25 +274,27 @@ def load_model():
|
|
235 |
|
236 |
print("\n4. Loading model from Hub...")
|
237 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
model = AutoModelForCausalLM.from_pretrained(
|
239 |
model_id,
|
240 |
config=config,
|
241 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
242 |
trust_remote_code=True,
|
|
|
243 |
low_cpu_mem_usage=True,
|
244 |
-
local_files_only=False
|
245 |
)
|
246 |
print("✓ Model loaded successfully")
|
247 |
print(f"Model type: {type(model)}")
|
248 |
except Exception as e:
|
249 |
print(f"× Error loading model: {str(e)}")
|
250 |
-
print("Attempting to print model files in Hub repo...")
|
251 |
-
from huggingface_hub import list_repo_files
|
252 |
-
try:
|
253 |
-
files = list_repo_files(model_id)
|
254 |
-
print(f"Files in repo: {files}")
|
255 |
-
except Exception as hub_e:
|
256 |
-
print(f"Error listing repo files: {str(hub_e)}")
|
257 |
raise
|
258 |
|
259 |
print("\n5. Moving model to device...")
|
@@ -293,6 +334,8 @@ def load_model():
|
|
293 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
294 |
if torch.cuda.is_available():
|
295 |
print(f"CUDA version: {torch.version.cuda}")
|
|
|
|
|
296 |
raise
|
297 |
|
298 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
|
191 |
# Load model and tokenizer
|
192 |
model_id = "jatingocodeo/SmolLM2"
|
193 |
|
194 |
+
def check_huggingface_access():
|
195 |
+
try:
|
196 |
+
from huggingface_hub import HfApi
|
197 |
+
api = HfApi()
|
198 |
+
|
199 |
+
# Check if token exists
|
200 |
+
try:
|
201 |
+
token = os.getenv("HF_TOKEN")
|
202 |
+
if not token:
|
203 |
+
print("× Warning: HF_TOKEN environment variable not found")
|
204 |
+
print(" Please ensure you have set your HuggingFace token")
|
205 |
+
return False
|
206 |
+
except Exception as e:
|
207 |
+
print(f"× Error checking HF_TOKEN: {str(e)}")
|
208 |
+
return False
|
209 |
+
|
210 |
+
# Check repository access
|
211 |
+
try:
|
212 |
+
print(f"Checking access to repository: {model_id}")
|
213 |
+
repo_info = api.repo_info(model_id, token=token)
|
214 |
+
print("✓ Repository access confirmed")
|
215 |
+
print(f"Repository info: {repo_info}")
|
216 |
+
return True
|
217 |
+
except Exception as e:
|
218 |
+
print(f"× Error accessing repository: {str(e)}")
|
219 |
+
return False
|
220 |
+
except Exception as e:
|
221 |
+
print(f"× Error in HuggingFace access check: {str(e)}")
|
222 |
+
return False
|
223 |
+
|
224 |
def load_model():
|
225 |
try:
|
226 |
print("\n=== Starting model loading process ===")
|
227 |
print(f"Model ID: {model_id}")
|
228 |
|
229 |
+
# Check HuggingFace access first
|
230 |
+
print("\nChecking HuggingFace access...")
|
231 |
+
if not check_huggingface_access():
|
232 |
+
raise Exception("Unable to access HuggingFace repository. Please check your token and repository permissions.")
|
233 |
+
|
234 |
print("\n1. Loading tokenizer...")
|
235 |
try:
|
236 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
237 |
+
model_id,
|
238 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
239 |
+
trust_remote_code=True
|
240 |
+
)
|
241 |
print("✓ Tokenizer loaded successfully")
|
242 |
print(f"Tokenizer type: {type(tokenizer)}")
|
243 |
print(f"Vocabulary size: {len(tokenizer)}")
|
|
|
274 |
|
275 |
print("\n4. Loading model from Hub...")
|
276 |
try:
|
277 |
+
# First try to list files in the repository
|
278 |
+
from huggingface_hub import list_repo_files
|
279 |
+
try:
|
280 |
+
files = list_repo_files(model_id, token=os.getenv("HF_TOKEN"))
|
281 |
+
print(f"Files in repository: {files}")
|
282 |
+
except Exception as hub_e:
|
283 |
+
print(f"Warning: Could not list repository files: {str(hub_e)}")
|
284 |
+
|
285 |
model = AutoModelForCausalLM.from_pretrained(
|
286 |
model_id,
|
287 |
config=config,
|
288 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
289 |
trust_remote_code=True,
|
290 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
291 |
low_cpu_mem_usage=True,
|
292 |
+
local_files_only=False
|
293 |
)
|
294 |
print("✓ Model loaded successfully")
|
295 |
print(f"Model type: {type(model)}")
|
296 |
except Exception as e:
|
297 |
print(f"× Error loading model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
raise
|
299 |
|
300 |
print("\n5. Moving model to device...")
|
|
|
334 |
print(f"CUDA available: {torch.cuda.is_available()}")
|
335 |
if torch.cuda.is_available():
|
336 |
print(f"CUDA version: {torch.version.cuda}")
|
337 |
+
print("\nEnvironment variables:")
|
338 |
+
print(f"HF_TOKEN set: {'HF_TOKEN' in os.environ}")
|
339 |
raise
|
340 |
|
341 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|