jatingocodeo commited on
Commit
cddc4c2
·
verified ·
1 Parent(s): f1f2941

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+
5
+ # Load model and tokenizer
6
+ model_id = "jatingocodeo/SmolLM2"
7
+
8
+ def load_model():
9
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
10
+ model = AutoModelForCausalLM.from_pretrained(
11
+ model_id,
12
+ torch_dtype=torch.float16,
13
+ device_map="auto"
14
+ )
15
+ return model, tokenizer
16
+
17
+ def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
18
+ # Load model and tokenizer (caching them for subsequent calls)
19
+ if not hasattr(generate_text, "model"):
20
+ generate_text.model, generate_text.tokenizer = load_model()
21
+
22
+ # Encode the prompt
23
+ input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt")
24
+ input_ids = input_ids.to(generate_text.model.device)
25
+
26
+ # Generate text
27
+ with torch.no_grad():
28
+ output_ids = generate_text.model.generate(
29
+ input_ids,
30
+ max_length=max_length,
31
+ temperature=temperature,
32
+ top_k=top_k,
33
+ pad_token_id=generate_text.tokenizer.pad_token_id,
34
+ eos_token_id=generate_text.tokenizer.eos_token_id,
35
+ do_sample=True
36
+ )
37
+
38
+ # Decode and return the generated text
39
+ generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
40
+ return generated_text
41
+
42
+ # Create Gradio interface
43
+ iface = gr.Interface(
44
+ fn=generate_text,
45
+ inputs=[
46
+ gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
47
+ gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
48
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
49
+ gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
50
+ ],
51
+ outputs=gr.Textbox(label="Generated Text"),
52
+ title="SmolLM2 Text Generator",
53
+ description="Generate text using the fine-tuned SmolLM2 model",
54
+ examples=[
55
+ ["Once upon a time", 100, 0.7, 50],
56
+ ["The quick brown fox", 150, 0.8, 40],
57
+ ["In a galaxy far far away", 200, 0.9, 30],
58
+ ]
59
+ )
60
+
61
+ if __name__ == "__main__":
62
+ iface.launch()