Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import torch
|
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
import math
|
|
|
7 |
|
8 |
class RMSNorm(nn.Module):
|
9 |
def __init__(self, hidden_size, eps=1e-5):
|
@@ -190,37 +191,56 @@ model_id = "jatingocodeo/SmolLM2"
|
|
190 |
|
191 |
def load_model():
|
192 |
try:
|
|
|
193 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
|
194 |
# Ensure the tokenizer has the necessary special tokens
|
195 |
special_tokens = {
|
196 |
'pad_token': '[PAD]',
|
197 |
'eos_token': '</s>',
|
198 |
'bos_token': '<s>'
|
199 |
}
|
|
|
200 |
tokenizer.add_special_tokens(special_tokens)
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
207 |
)
|
|
|
208 |
|
209 |
# Move model to device manually
|
210 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
211 |
model = model.to(device)
|
212 |
|
213 |
# Resize token embeddings to match new tokenizer
|
|
|
214 |
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
|
215 |
return model, tokenizer
|
216 |
except Exception as e:
|
217 |
print(f"Error loading model: {str(e)}")
|
|
|
|
|
|
|
218 |
raise
|
219 |
|
220 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
221 |
try:
|
|
|
222 |
# Load model and tokenizer (caching them for subsequent calls)
|
223 |
if not hasattr(generate_text, "model"):
|
|
|
224 |
generate_text.model, generate_text.tokenizer = load_model()
|
225 |
|
226 |
# Ensure the prompt is not empty
|
@@ -231,15 +251,17 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
231 |
if not prompt.startswith(generate_text.tokenizer.bos_token):
|
232 |
prompt = generate_text.tokenizer.bos_token + prompt
|
233 |
|
|
|
234 |
# Encode the prompt
|
235 |
input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
236 |
input_ids = input_ids.to(generate_text.model.device)
|
237 |
|
|
|
238 |
# Generate text
|
239 |
with torch.no_grad():
|
240 |
output_ids = generate_text.model.generate(
|
241 |
input_ids,
|
242 |
-
max_length=min(max_length + len(input_ids[0]), 2048),
|
243 |
temperature=temperature,
|
244 |
top_k=top_k,
|
245 |
do_sample=True,
|
@@ -248,12 +270,17 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
248 |
num_return_sequences=1
|
249 |
)
|
250 |
|
|
|
251 |
# Decode and return the generated text
|
252 |
generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
253 |
return generated_text.strip()
|
254 |
|
255 |
except Exception as e:
|
256 |
print(f"Error during generation: {str(e)}")
|
|
|
|
|
|
|
257 |
return f"An error occurred: {str(e)}"
|
258 |
|
259 |
# Create Gradio interface
|
@@ -280,4 +307,5 @@ iface = gr.Interface(
|
|
280 |
)
|
281 |
|
282 |
if __name__ == "__main__":
|
283 |
-
|
|
|
|
4 |
import torch.nn as nn
|
5 |
import torch.nn.functional as F
|
6 |
import math
|
7 |
+
import os
|
8 |
|
9 |
class RMSNorm(nn.Module):
|
10 |
def __init__(self, hidden_size, eps=1e-5):
|
|
|
191 |
|
192 |
def load_model():
|
193 |
try:
|
194 |
+
print("Loading tokenizer...")
|
195 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
196 |
+
print("Tokenizer loaded successfully")
|
197 |
+
|
198 |
# Ensure the tokenizer has the necessary special tokens
|
199 |
special_tokens = {
|
200 |
'pad_token': '[PAD]',
|
201 |
'eos_token': '</s>',
|
202 |
'bos_token': '<s>'
|
203 |
}
|
204 |
+
print("Adding special tokens...")
|
205 |
tokenizer.add_special_tokens(special_tokens)
|
206 |
|
207 |
+
print("Loading model configuration...")
|
208 |
+
config = SmolLM2Config()
|
209 |
+
|
210 |
+
print("Initializing model...")
|
211 |
+
model = SmolLM2ForCausalLM(config)
|
212 |
+
|
213 |
+
print("Loading model weights...")
|
214 |
+
state_dict = torch.load(
|
215 |
+
os.path.join(model_id, "pytorch_model.bin"),
|
216 |
+
map_location="cpu"
|
217 |
)
|
218 |
+
model.load_state_dict(state_dict)
|
219 |
|
220 |
# Move model to device manually
|
221 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
222 |
+
print(f"Moving model to device: {device}")
|
223 |
model = model.to(device)
|
224 |
|
225 |
# Resize token embeddings to match new tokenizer
|
226 |
+
print("Resizing token embeddings...")
|
227 |
model.resize_token_embeddings(len(tokenizer))
|
228 |
+
|
229 |
+
print("Model loaded successfully!")
|
230 |
return model, tokenizer
|
231 |
except Exception as e:
|
232 |
print(f"Error loading model: {str(e)}")
|
233 |
+
print(f"Error type: {type(e)}")
|
234 |
+
import traceback
|
235 |
+
traceback.print_exc()
|
236 |
raise
|
237 |
|
238 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
239 |
try:
|
240 |
+
print(f"\nGenerating text for prompt: {prompt}")
|
241 |
# Load model and tokenizer (caching them for subsequent calls)
|
242 |
if not hasattr(generate_text, "model"):
|
243 |
+
print("First call - loading model...")
|
244 |
generate_text.model, generate_text.tokenizer = load_model()
|
245 |
|
246 |
# Ensure the prompt is not empty
|
|
|
251 |
if not prompt.startswith(generate_text.tokenizer.bos_token):
|
252 |
prompt = generate_text.tokenizer.bos_token + prompt
|
253 |
|
254 |
+
print("Encoding prompt...")
|
255 |
# Encode the prompt
|
256 |
input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
257 |
input_ids = input_ids.to(generate_text.model.device)
|
258 |
|
259 |
+
print("Generating text...")
|
260 |
# Generate text
|
261 |
with torch.no_grad():
|
262 |
output_ids = generate_text.model.generate(
|
263 |
input_ids,
|
264 |
+
max_length=min(max_length + len(input_ids[0]), 2048),
|
265 |
temperature=temperature,
|
266 |
top_k=top_k,
|
267 |
do_sample=True,
|
|
|
270 |
num_return_sequences=1
|
271 |
)
|
272 |
|
273 |
+
print("Decoding generated text...")
|
274 |
# Decode and return the generated text
|
275 |
generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
276 |
+
print("Generation completed successfully!")
|
277 |
return generated_text.strip()
|
278 |
|
279 |
except Exception as e:
|
280 |
print(f"Error during generation: {str(e)}")
|
281 |
+
print(f"Error type: {type(e)}")
|
282 |
+
import traceback
|
283 |
+
traceback.print_exc()
|
284 |
return f"An error occurred: {str(e)}"
|
285 |
|
286 |
# Create Gradio interface
|
|
|
307 |
)
|
308 |
|
309 |
if __name__ == "__main__":
|
310 |
+
print("Starting Gradio interface...")
|
311 |
+
iface.launch(debug=True)
|