Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,56 +6,89 @@ import torch
|
|
6 |
model_id = "jatingocodeo/SmolLM2"
|
7 |
|
8 |
def load_model():
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
18 |
-
|
19 |
-
|
20 |
-
generate_text
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
input_ids,
|
30 |
-
max_length=max_length,
|
31 |
-
temperature=temperature,
|
32 |
-
top_k=top_k,
|
33 |
-
pad_token_id=generate_text.tokenizer.pad_token_id,
|
34 |
-
eos_token_id=generate_text.tokenizer.eos_token_id,
|
35 |
-
do_sample=True
|
36 |
-
)
|
37 |
-
|
38 |
-
# Decode and return the generated text
|
39 |
-
generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
40 |
-
return generated_text
|
41 |
|
42 |
# Create Gradio interface
|
43 |
iface = gr.Interface(
|
44 |
fn=generate_text,
|
45 |
inputs=[
|
46 |
-
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
|
47 |
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
|
48 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
49 |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
|
50 |
],
|
51 |
-
outputs=gr.Textbox(label="Generated Text"),
|
52 |
title="SmolLM2 Text Generator",
|
53 |
-
description="Generate text using the fine-tuned SmolLM2 model
|
|
|
|
|
|
|
54 |
examples=[
|
55 |
["Once upon a time", 100, 0.7, 50],
|
56 |
["The quick brown fox", 150, 0.8, 40],
|
57 |
["In a galaxy far far away", 200, 0.9, 30],
|
58 |
-
]
|
|
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|
|
|
6 |
model_id = "jatingocodeo/SmolLM2"
|
7 |
|
8 |
def load_model():
|
9 |
+
try:
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
11 |
+
# Ensure the tokenizer has the necessary special tokens
|
12 |
+
special_tokens = {
|
13 |
+
'pad_token': '[PAD]',
|
14 |
+
'eos_token': '</s>',
|
15 |
+
'bos_token': '<s>'
|
16 |
+
}
|
17 |
+
tokenizer.add_special_tokens(special_tokens)
|
18 |
+
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_id,
|
21 |
+
torch_dtype=torch.float16,
|
22 |
+
device_map="auto",
|
23 |
+
pad_token_id=tokenizer.pad_token_id
|
24 |
+
)
|
25 |
+
# Resize token embeddings to match new tokenizer
|
26 |
+
model.resize_token_embeddings(len(tokenizer))
|
27 |
+
return model, tokenizer
|
28 |
+
except Exception as e:
|
29 |
+
print(f"Error loading model: {str(e)}")
|
30 |
+
raise
|
31 |
|
32 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
33 |
+
try:
|
34 |
+
# Load model and tokenizer (caching them for subsequent calls)
|
35 |
+
if not hasattr(generate_text, "model"):
|
36 |
+
generate_text.model, generate_text.tokenizer = load_model()
|
37 |
+
|
38 |
+
# Ensure the prompt is not empty
|
39 |
+
if not prompt.strip():
|
40 |
+
return "Please enter a prompt."
|
41 |
+
|
42 |
+
# Add BOS token if needed
|
43 |
+
if not prompt.startswith(generate_text.tokenizer.bos_token):
|
44 |
+
prompt = generate_text.tokenizer.bos_token + prompt
|
45 |
+
|
46 |
+
# Encode the prompt
|
47 |
+
input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
48 |
+
input_ids = input_ids.to(generate_text.model.device)
|
49 |
+
|
50 |
+
# Generate text
|
51 |
+
with torch.no_grad():
|
52 |
+
output_ids = generate_text.model.generate(
|
53 |
+
input_ids,
|
54 |
+
max_length=min(max_length + len(input_ids[0]), 2048), # Respect model's max length
|
55 |
+
temperature=temperature,
|
56 |
+
top_k=top_k,
|
57 |
+
do_sample=True,
|
58 |
+
pad_token_id=generate_text.tokenizer.pad_token_id,
|
59 |
+
eos_token_id=generate_text.tokenizer.eos_token_id,
|
60 |
+
num_return_sequences=1
|
61 |
+
)
|
62 |
+
|
63 |
+
# Decode and return the generated text
|
64 |
+
generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
65 |
+
return generated_text.strip()
|
66 |
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error during generation: {str(e)}")
|
69 |
+
return f"An error occurred: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
# Create Gradio interface
|
72 |
iface = gr.Interface(
|
73 |
fn=generate_text,
|
74 |
inputs=[
|
75 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
|
76 |
gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
|
77 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
78 |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
|
79 |
],
|
80 |
+
outputs=gr.Textbox(label="Generated Text", lines=5),
|
81 |
title="SmolLM2 Text Generator",
|
82 |
+
description="""Generate text using the fine-tuned SmolLM2 model.
|
83 |
+
- Max Length: Controls the length of generated text
|
84 |
+
- Temperature: Controls randomness (higher = more creative)
|
85 |
+
- Top K: Controls diversity of word choices""",
|
86 |
examples=[
|
87 |
["Once upon a time", 100, 0.7, 50],
|
88 |
["The quick brown fox", 150, 0.8, 40],
|
89 |
["In a galaxy far far away", 200, 0.9, 30],
|
90 |
+
],
|
91 |
+
allow_flagging="never"
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|