import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig from huggingface_hub import hf_hub_download import json # Define the model architecture class SmolLM2Config(PretrainedConfig): model_type = "smollm2" def __init__( self, vocab_size=49152, hidden_size=576, intermediate_size=1536, num_hidden_layers=30, num_attention_heads=9, num_key_value_heads=3, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=0, eos_token_id=0, tie_word_embeddings=True, **kwargs ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs ) # Register the model architecture from transformers import AutoConfig AutoConfig.register("smollm2", SmolLM2Config) class SmolLM2ForCausalLM(PreTrainedModel): config_class = SmolLM2Config def __init__(self, config): super().__init__(config) self.config = config # Load the model weights directly from the checkpoint self.model = AutoModelForCausalLM.from_pretrained( "meta-llama/Llama-2-7b-hf", config=config, torch_dtype=torch.float16, low_cpu_mem_usage=True ) def forward(self, input_ids=None, attention_mask=None, labels=None, **kwargs): return self.model( input_ids=input_ids, attention_mask=attention_mask, labels=labels, **kwargs ) def prepare_inputs_for_generation(self, input_ids, **kwargs): return self.model.prepare_inputs_for_generation(input_ids, **kwargs) # Register the model AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM) # Cache for model and tokenizer MODEL = None TOKENIZER = None def initialize(): global MODEL, TOKENIZER if MODEL is None: print("Loading model and tokenizer...") model_id = "jatingocodeo/SmolLM2" try: # Download and load config print("Loading config...") config_path = hf_hub_download(repo_id=model_id, filename="config.json") with open(config_path, 'r') as f: config_dict = json.load(f) config = SmolLM2Config(**config_dict) # Load tokenizer print("Loading tokenizer...") TOKENIZER = AutoTokenizer.from_pretrained(model_id) # Add special tokens if needed special_tokens = { 'pad_token': '[PAD]', 'eos_token': '', 'bos_token': '' } TOKENIZER.add_special_tokens(special_tokens) # Load model print("Loading model...") MODEL = SmolLM2ForCausalLM.from_pretrained( model_id, config=config, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, trust_remote_code=True, low_cpu_mem_usage=True ) # Move model to device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") MODEL.to(device) print(f"Model loaded successfully on {device}") except Exception as e: print(f"Error initializing: {str(e)}") raise def generate_text(prompt, max_length=100, temperature=0.7, top_k=50): # Initialize if not already done if MODEL is None: try: initialize() except Exception as e: return f"Failed to initialize model: {str(e)}" try: # Process prompt if not prompt.strip(): return "Please enter a prompt." # Add BOS token if needed if not prompt.startswith(TOKENIZER.bos_token): prompt = TOKENIZER.bos_token + prompt # Encode prompt input_ids = TOKENIZER.encode(prompt, return_tensors="pt", truncation=True, max_length=2048) input_ids = input_ids.to(MODEL.device) # Generate with torch.no_grad(): outputs = MODEL.generate( input_ids, max_length=min(max_length + len(input_ids[0]), 2048), temperature=max(0.1, min(temperature, 1.0)), # Clamp temperature top_k=max(1, min(top_k, 100)), # Clamp top_k do_sample=True if temperature > 0 else False, num_return_sequences=1, pad_token_id=TOKENIZER.pad_token_id, eos_token_id=TOKENIZER.eos_token_id, ) # Decode and return generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True) return generated_text.strip() except Exception as e: import traceback traceback.print_exc() return f"Error during text generation: {str(e)}" # Create Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2), gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"), ], outputs=gr.Textbox(label="Generated Text", lines=5), title="SmolLM2 Text Generator", description="Generate text using the fine-tuned SmolLM2 model. Adjust parameters to control the generation.", examples=[ ["Once upon a time", 100, 0.7, 50], ["The quick brown fox", 150, 0.8, 40], ], allow_flagging="never" ) # Initialize on startup try: initialize() except Exception as e: print(f"Warning: Model initialization failed: {str(e)}") print("Model will be initialized on first request") if __name__ == "__main__": iface.launch()