import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig import torch import torch.nn as nn import torch.nn.functional as F import math # Model architecture definition class SmolLM2Config(PretrainedConfig): model_type = "smollm2" def __init__( self, vocab_size=49152, hidden_size=576, intermediate_size=1536, num_hidden_layers=30, num_attention_heads=9, num_key_value_heads=3, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.041666666666666664, rms_norm_eps=1e-5, use_cache=True, pad_token_id=None, bos_token_id=0, eos_token_id=0, tie_word_embeddings=True, rope_theta=10000.0, **kwargs ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs ) class SmolLM2ForCausalLM(PreTrainedModel): config_class = SmolLM2Config _no_split_modules = ["LlamaDecoderLayer"] def __init__(self, config): super().__init__(config) self.config = config self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) if config.tie_word_embeddings: self.lm_head.weight = self.embed_tokens.weight def forward(self, input_ids, attention_mask=None, labels=None): hidden_states = self.embed_tokens(input_ids) logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1)) return logits if loss is None else (loss, logits) def prepare_inputs_for_generation(self, input_ids, **kwargs): return {"input_ids": input_ids} # Register the model architecture from transformers import AutoConfig, AutoModelForCausalLM AutoConfig.register("smollm2", SmolLM2Config) AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM) # Load model and tokenizer model_id = "jatingocodeo/SmolLM2" def load_model(): try: tokenizer = AutoTokenizer.from_pretrained(model_id) # Ensure the tokenizer has the necessary special tokens special_tokens = { 'pad_token': '[PAD]', 'eos_token': '', 'bos_token': '' } tokenizer.add_special_tokens(special_tokens) # Load model without device_map model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, pad_token_id=tokenizer.pad_token_id ) # Move model to device manually device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) # Resize token embeddings to match new tokenizer model.resize_token_embeddings(len(tokenizer)) return model, tokenizer except Exception as e: print(f"Error loading model: {str(e)}") raise def generate_text(prompt, max_length=100, temperature=0.7, top_k=50): try: # Load model and tokenizer (caching them for subsequent calls) if not hasattr(generate_text, "model"): generate_text.model, generate_text.tokenizer = load_model() # Ensure the prompt is not empty if not prompt.strip(): return "Please enter a prompt." # Add BOS token if needed if not prompt.startswith(generate_text.tokenizer.bos_token): prompt = generate_text.tokenizer.bos_token + prompt # Encode the prompt input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048) input_ids = input_ids.to(generate_text.model.device) # Generate text with torch.no_grad(): output_ids = generate_text.model.generate( input_ids, max_length=min(max_length + len(input_ids[0]), 2048), # Respect model's max length temperature=temperature, top_k=top_k, do_sample=True, pad_token_id=generate_text.tokenizer.pad_token_id, eos_token_id=generate_text.tokenizer.eos_token_id, num_return_sequences=1 ) # Decode and return the generated text generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True) return generated_text.strip() except Exception as e: print(f"Error during generation: {str(e)}") return f"An error occurred: {str(e)}" # Create Gradio interface iface = gr.Interface( fn=generate_text, inputs=[ gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2), gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"), ], outputs=gr.Textbox(label="Generated Text", lines=5), title="SmolLM2 Text Generator", description="""Generate text using the fine-tuned SmolLM2 model. - Max Length: Controls the length of generated text - Temperature: Controls randomness (higher = more creative) - Top K: Controls diversity of word choices""", examples=[ ["Once upon a time", 100, 0.7, 50], ["The quick brown fox", 150, 0.8, 40], ["In a galaxy far far away", 200, 0.9, 30], ], allow_flagging="never" ) if __name__ == "__main__": iface.launch()