Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
from PIL import Image
|
6 |
+
import requests
|
7 |
+
from io import BytesIO
|
8 |
+
import torchvision.datasets as datasets
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Load SigLIP for image embeddings
|
12 |
+
from model.siglip import SigLIPModel
|
13 |
+
|
14 |
+
def get_cifar_examples():
|
15 |
+
# Load CIFAR10 test set
|
16 |
+
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True)
|
17 |
+
|
18 |
+
# CIFAR10 classes
|
19 |
+
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
20 |
+
'dog', 'frog', 'horse', 'ship', 'truck']
|
21 |
+
|
22 |
+
# Get one example from each class
|
23 |
+
examples = []
|
24 |
+
used_classes = set()
|
25 |
+
|
26 |
+
for idx in range(len(cifar10_test)):
|
27 |
+
img, label = cifar10_test[idx]
|
28 |
+
if classes[label] not in used_classes:
|
29 |
+
# Save the image temporarily
|
30 |
+
img_path = f"examples/{classes[label]}_example.jpg"
|
31 |
+
img.save(img_path)
|
32 |
+
examples.append(img_path)
|
33 |
+
used_classes.add(classes[label])
|
34 |
+
|
35 |
+
if len(used_classes) == 10: # We have one example from each class
|
36 |
+
break
|
37 |
+
|
38 |
+
return examples
|
39 |
+
|
40 |
+
def load_models():
|
41 |
+
# Load SigLIP model
|
42 |
+
siglip = SigLIPModel()
|
43 |
+
|
44 |
+
# Load base Phi model
|
45 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
46 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
47 |
+
trust_remote_code=True,
|
48 |
+
device_map="auto",
|
49 |
+
torch_dtype=torch.float32
|
50 |
+
)
|
51 |
+
|
52 |
+
# Load our fine-tuned LoRA adapter
|
53 |
+
model = PeftModel.from_pretrained(
|
54 |
+
base_model,
|
55 |
+
"jatingocodeo/phi-vlm", # Your uploaded model
|
56 |
+
device_map="auto"
|
57 |
+
)
|
58 |
+
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained("jatingocodeo/phi-vlm")
|
60 |
+
|
61 |
+
return siglip, model, tokenizer
|
62 |
+
|
63 |
+
def generate_description(image, siglip, model, tokenizer):
|
64 |
+
# Convert image to RGB if needed
|
65 |
+
if image.mode != "RGB":
|
66 |
+
image = image.convert("RGB")
|
67 |
+
|
68 |
+
# Resize image to match SigLIP's expected size
|
69 |
+
image = image.resize((32, 32))
|
70 |
+
|
71 |
+
# Get image embedding from SigLIP
|
72 |
+
image_embedding = siglip.encode_image(image)
|
73 |
+
|
74 |
+
# Prepare prompt
|
75 |
+
prompt = """Below is an image. Please describe it in detail.
|
76 |
+
|
77 |
+
Image: <image>
|
78 |
+
Description: """
|
79 |
+
|
80 |
+
# Tokenize input
|
81 |
+
inputs = tokenizer(
|
82 |
+
prompt,
|
83 |
+
return_tensors="pt",
|
84 |
+
padding=True,
|
85 |
+
truncation=True,
|
86 |
+
max_length=128
|
87 |
+
).to(model.device)
|
88 |
+
|
89 |
+
# Generate description
|
90 |
+
with torch.no_grad():
|
91 |
+
outputs = model(
|
92 |
+
**inputs,
|
93 |
+
image_embeddings=image_embedding.unsqueeze(0),
|
94 |
+
max_new_tokens=100,
|
95 |
+
temperature=0.7,
|
96 |
+
do_sample=True,
|
97 |
+
top_p=0.9
|
98 |
+
)
|
99 |
+
|
100 |
+
# Decode and return the generated text
|
101 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
102 |
+
return generated_text.split("Description: ")[-1].strip()
|
103 |
+
|
104 |
+
# Load models
|
105 |
+
print("Loading models...")
|
106 |
+
siglip, model, tokenizer = load_models()
|
107 |
+
|
108 |
+
# Create Gradio interface
|
109 |
+
def process_image(image):
|
110 |
+
description = generate_description(image, siglip, model, tokenizer)
|
111 |
+
return description
|
112 |
+
|
113 |
+
# Get CIFAR10 examples
|
114 |
+
examples = get_cifar_examples()
|
115 |
+
|
116 |
+
# Define interface
|
117 |
+
iface = gr.Interface(
|
118 |
+
fn=process_image,
|
119 |
+
inputs=gr.Image(type="pil"),
|
120 |
+
outputs=gr.Textbox(label="Generated Description"),
|
121 |
+
title="Image Description Generator",
|
122 |
+
description="""Upload an image and get a detailed description generated by our fine-tuned VLM model.
|
123 |
+
Below are sample images from CIFAR10 dataset that you can try.""",
|
124 |
+
examples=[[ex] for ex in examples] # Format examples for Gradio
|
125 |
+
)
|
126 |
+
|
127 |
+
# Launch the interface
|
128 |
+
if __name__ == "__main__":
|
129 |
+
iface.launch()
|