Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,12 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
from peft import PeftModel
|
5 |
from PIL import Image
|
6 |
import torchvision.datasets as datasets
|
|
|
7 |
|
8 |
def load_model(model_id):
|
|
|
|
|
|
|
9 |
# First load the base model
|
10 |
base_model_id = "microsoft/Phi-3-mini-4k-instruct"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
@@ -14,15 +18,29 @@ def load_model(model_id):
|
|
14 |
if tokenizer.pad_token is None:
|
15 |
tokenizer.pad_token = tokenizer.eos_token
|
16 |
|
|
|
17 |
base_model = AutoModelForCausalLM.from_pretrained(
|
18 |
base_model_id,
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
trust_remote_code=True
|
22 |
)
|
23 |
|
24 |
-
# Load the LoRA adapter
|
25 |
-
model = PeftModel.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
return model, tokenizer
|
27 |
|
28 |
def generate_description(image, model, tokenizer, max_length=100, temperature=0.7, top_p=0.9):
|
|
|
4 |
from peft import PeftModel
|
5 |
from PIL import Image
|
6 |
import torchvision.datasets as datasets
|
7 |
+
import os
|
8 |
|
9 |
def load_model(model_id):
|
10 |
+
# Create offload directory
|
11 |
+
os.makedirs("offload", exist_ok=True)
|
12 |
+
|
13 |
# First load the base model
|
14 |
base_model_id = "microsoft/Phi-3-mini-4k-instruct"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
|
18 |
if tokenizer.pad_token is None:
|
19 |
tokenizer.pad_token = tokenizer.eos_token
|
20 |
|
21 |
+
# Load base model with 8-bit quantization and offloading
|
22 |
base_model = AutoModelForCausalLM.from_pretrained(
|
23 |
base_model_id,
|
24 |
+
load_in_8bit=True, # Use 8-bit quantization
|
25 |
+
torch_dtype=torch.float16,
|
26 |
+
device_map={
|
27 |
+
"model.embed_tokens": 0,
|
28 |
+
"model.layers": "auto",
|
29 |
+
"model.norm": "cpu",
|
30 |
+
"lm_head": 0
|
31 |
+
},
|
32 |
+
offload_folder="offload",
|
33 |
trust_remote_code=True
|
34 |
)
|
35 |
|
36 |
+
# Load the LoRA adapter with same device mapping
|
37 |
+
model = PeftModel.from_pretrained(
|
38 |
+
base_model,
|
39 |
+
model_id,
|
40 |
+
offload_folder="offload",
|
41 |
+
device_map="auto"
|
42 |
+
)
|
43 |
+
|
44 |
return model, tokenizer
|
45 |
|
46 |
def generate_description(image, model, tokenizer, max_length=100, temperature=0.7, top_p=0.9):
|