Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,9 +7,6 @@ import torchvision.datasets as datasets
|
|
7 |
import os
|
8 |
|
9 |
def load_model(model_id):
|
10 |
-
# Create offload directory
|
11 |
-
os.makedirs("offload", exist_ok=True)
|
12 |
-
|
13 |
# First load the base model
|
14 |
base_model_id = "microsoft/Phi-3-mini-4k-instruct"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
@@ -18,27 +15,20 @@ def load_model(model_id):
|
|
18 |
if tokenizer.pad_token is None:
|
19 |
tokenizer.pad_token = tokenizer.eos_token
|
20 |
|
21 |
-
# Load base model
|
22 |
base_model = AutoModelForCausalLM.from_pretrained(
|
23 |
base_model_id,
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"model.layers": "auto",
|
29 |
-
"model.norm": "cpu",
|
30 |
-
"lm_head": 0
|
31 |
-
},
|
32 |
-
offload_folder="offload",
|
33 |
-
trust_remote_code=True
|
34 |
)
|
35 |
|
36 |
-
# Load the LoRA adapter
|
37 |
model = PeftModel.from_pretrained(
|
38 |
base_model,
|
39 |
model_id,
|
40 |
-
|
41 |
-
device_map="auto"
|
42 |
)
|
43 |
|
44 |
return model, tokenizer
|
|
|
7 |
import os
|
8 |
|
9 |
def load_model(model_id):
|
|
|
|
|
|
|
10 |
# First load the base model
|
11 |
base_model_id = "microsoft/Phi-3-mini-4k-instruct"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
|
|
15 |
if tokenizer.pad_token is None:
|
16 |
tokenizer.pad_token = tokenizer.eos_token
|
17 |
|
18 |
+
# Load base model for CPU
|
19 |
base_model = AutoModelForCausalLM.from_pretrained(
|
20 |
base_model_id,
|
21 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
22 |
+
device_map="cpu", # Force CPU
|
23 |
+
trust_remote_code=True,
|
24 |
+
low_cpu_mem_usage=True # Enable memory optimization
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
)
|
26 |
|
27 |
+
# Load the LoRA adapter
|
28 |
model = PeftModel.from_pretrained(
|
29 |
base_model,
|
30 |
model_id,
|
31 |
+
device_map="cpu" # Force CPU
|
|
|
32 |
)
|
33 |
|
34 |
return model, tokenizer
|