Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,21 +4,43 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from PIL import Image
|
6 |
import torchvision.datasets as datasets
|
|
|
|
|
7 |
|
8 |
def load_model():
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
base_model = AutoModelForCausalLM.from_pretrained(
|
11 |
"microsoft/Phi-3-mini-4k-instruct",
|
12 |
trust_remote_code=True,
|
13 |
-
device_map=
|
14 |
-
torch_dtype=torch.float32
|
|
|
|
|
15 |
)
|
16 |
|
17 |
-
# Load our fine-tuned LoRA adapter
|
18 |
model = PeftModel.from_pretrained(
|
19 |
base_model,
|
20 |
-
"jatingocodeo/phi-vlm",
|
21 |
-
device_map=
|
|
|
22 |
)
|
23 |
|
24 |
tokenizer = AutoTokenizer.from_pretrained("jatingocodeo/phi-vlm")
|
@@ -30,13 +52,16 @@ def generate_description(image, model, tokenizer):
|
|
30 |
if image.mode != "RGB":
|
31 |
image = image.convert("RGB")
|
32 |
|
33 |
-
# Resize image to match training size
|
34 |
image = image.resize((32, 32))
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
-
Image:
|
40 |
Description: """
|
41 |
|
42 |
# Tokenize input
|
@@ -51,7 +76,8 @@ Description: """
|
|
51 |
# Generate description
|
52 |
with torch.no_grad():
|
53 |
outputs = model.generate(
|
54 |
-
|
|
|
55 |
max_new_tokens=100,
|
56 |
temperature=0.7,
|
57 |
do_sample=True,
|
|
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from PIL import Image
|
6 |
import torchvision.datasets as datasets
|
7 |
+
import numpy as np
|
8 |
+
import os
|
9 |
|
10 |
def load_model():
|
11 |
+
# Create offload directory
|
12 |
+
os.makedirs("offload", exist_ok=True)
|
13 |
+
|
14 |
+
# Configure device map for memory efficiency
|
15 |
+
device_map = {
|
16 |
+
'base_model.model.model.embed_tokens': 0,
|
17 |
+
'base_model.model.model.layers.0': 0,
|
18 |
+
'base_model.model.model.layers.1': 0,
|
19 |
+
'base_model.model.model.layers.2': 0,
|
20 |
+
'base_model.model.model.layers.3': 0,
|
21 |
+
'base_model.model.model.layers.4': 'cpu',
|
22 |
+
'base_model.model.model.layers.5': 'cpu',
|
23 |
+
'base_model.model.model.layers.6': 'cpu',
|
24 |
+
'base_model.model.model.layers.7': 'cpu',
|
25 |
+
'base_model.model.model.layers.8': 'cpu',
|
26 |
+
'base_model.model.model.norm': 'cpu',
|
27 |
+
'base_model.model.lm_head': 0,
|
28 |
+
}
|
29 |
+
|
30 |
base_model = AutoModelForCausalLM.from_pretrained(
|
31 |
"microsoft/Phi-3-mini-4k-instruct",
|
32 |
trust_remote_code=True,
|
33 |
+
device_map=device_map, # Use custom device map
|
34 |
+
torch_dtype=torch.float32,
|
35 |
+
attn_implementation='eager',
|
36 |
+
offload_folder="offload"
|
37 |
)
|
38 |
|
|
|
39 |
model = PeftModel.from_pretrained(
|
40 |
base_model,
|
41 |
+
"jatingocodeo/phi-vlm",
|
42 |
+
device_map=device_map,
|
43 |
+
offload_folder="offload"
|
44 |
)
|
45 |
|
46 |
tokenizer = AutoTokenizer.from_pretrained("jatingocodeo/phi-vlm")
|
|
|
52 |
if image.mode != "RGB":
|
53 |
image = image.convert("RGB")
|
54 |
|
55 |
+
# Resize image to match training size (32x32)
|
56 |
image = image.resize((32, 32))
|
57 |
|
58 |
+
# Convert image to tensor and normalize
|
59 |
+
image_tensor = torch.FloatTensor(np.array(image)).permute(2, 0, 1) / 255.0
|
60 |
+
|
61 |
+
# Prepare prompt with image tensor
|
62 |
+
prompt = f"""Below is an image. Please describe it in detail.
|
63 |
|
64 |
+
Image: {image_tensor}
|
65 |
Description: """
|
66 |
|
67 |
# Tokenize input
|
|
|
76 |
# Generate description
|
77 |
with torch.no_grad():
|
78 |
outputs = model.generate(
|
79 |
+
input_ids=inputs.input_ids,
|
80 |
+
attention_mask=inputs.attention_mask,
|
81 |
max_new_tokens=100,
|
82 |
temperature=0.7,
|
83 |
do_sample=True,
|