jatingocodeo commited on
Commit
8cc89af
·
verified ·
1 Parent(s): e68d6fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -12
README.md CHANGED
@@ -1,12 +1,54 @@
1
- ---
2
- title: Phi2 Assistant Demo
3
- emoji: 🐠
4
- colorFrom: indigo
5
- colorTo: red
6
- sdk: gradio
7
- sdk_version: 5.20.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Phi-2 Fine-tuned Assistant Demo
2
+
3
+ This Space demonstrates a fine-tuned version of the Microsoft Phi-2 model, trained on the OpenAssistant dataset using QLoRA (Quantized Low-Rank Adaptation). The model is designed to provide helpful and informative responses to various types of queries and instructions.
4
+
5
+ ## Model Information
6
+
7
+ - **Base Model:** Microsoft Phi-2
8
+ - **Fine-tuning Dataset:** OpenAssistant
9
+ - **Training Method:** QLoRA with 8-bit quantization
10
+ - **Model Card:** [jatingocodeo/phi2-finetuned-openassistant](https://huggingface.co/jatingocodeo/phi2-finetuned-openassistant)
11
+
12
+ ## How to Use
13
+
14
+ 1. **Enter your query** in the text box
15
+ 2. Adjust generation parameters (optional):
16
+ - **Maximum Length** (50-500): Controls response length
17
+ - **Temperature** (0.1-1.0): Controls randomness
18
+ - **Top P** (0.1-1.0): Controls token sampling
19
+
20
+ ## Example Prompts
21
+
22
+ Try these examples to see what the model can do:
23
+ - "What is machine learning?"
24
+ - "Write a short poem about artificial intelligence"
25
+ - "Explain quantum computing to a 10-year-old"
26
+ - "What are the best practices for writing clean code?"
27
+
28
+ ## Model Capabilities
29
+
30
+ The model is trained to:
31
+ - Provide informative explanations
32
+ - Answer questions clearly and concisely
33
+ - Generate creative content
34
+ - Give technical explanations
35
+ - Follow instructions and complete tasks
36
+
37
+ ## Limitations
38
+
39
+ - The model may occasionally generate incorrect information
40
+ - Responses are limited by the training data
41
+ - The model should not be used for critical applications without human oversight
42
+ - Complex or ambiguous queries might receive simplified responses
43
+
44
+ ## Technical Details
45
+
46
+ The model uses:
47
+ - 8-bit quantization for efficient inference
48
+ - Gradient checkpointing
49
+ - Mixed precision training
50
+ - LoRA fine-tuning techniques
51
+
52
+ ## License
53
+
54
+ This demo uses a model that inherits the license of the base Phi-2 model and the OpenAssistant dataset.