|
import gradio as gr |
|
import jax |
|
import numpy as np |
|
import jax.numpy as jnp |
|
from flax.jax_utils import replicate |
|
from flax.training.common_utils import shard |
|
from PIL import Image |
|
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel |
|
import cv2 |
|
|
|
def create_key(seed=0): |
|
return jax.random.PRNGKey(seed) |
|
|
|
def canny_filter(image): |
|
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) |
|
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0) |
|
edges_image = cv2.Canny(blurred_image, 50, 150) |
|
return edges_image |
|
|
|
|
|
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( |
|
"jax-diffusers-event/canny-coyo1m", dtype=jnp.bfloat16 |
|
) |
|
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 |
|
) |
|
|
|
def infer(prompts, negative_prompts, image): |
|
params["controlnet"] = controlnet_params |
|
|
|
num_samples = 1 |
|
rng = create_key(0) |
|
rng = jax.random.split(rng, jax.device_count()) |
|
im = canny_filter(image) |
|
canny_image = Image.fromarray(im) |
|
|
|
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) |
|
negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) |
|
processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) |
|
|
|
p_params = replicate(params) |
|
prompt_ids = shard(prompt_ids) |
|
negative_prompt_ids = shard(negative_prompt_ids) |
|
processed_image = shard(processed_image) |
|
|
|
output = pipe( |
|
prompt_ids=prompt_ids, |
|
image=processed_image, |
|
params=p_params, |
|
prng_seed=rng, |
|
num_inference_steps=50, |
|
neg_prompt_ids=negative_prompt_ids, |
|
jit=True, |
|
).images |
|
|
|
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) |
|
return output_images |
|
|
|
gr.Interface(infer, inputs=["text", "text", "image"], outputs="gallery").launch() |
|
|