Update nexus.py
Browse files
nexus.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
-
from llama_index
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
from docx import Document
|
5 |
-
from llama_index.llms
|
6 |
-
from llama_index.
|
7 |
from Bio import Entrez
|
8 |
import ssl
|
9 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
10 |
import streamlit as st
|
11 |
from googleapiclient.discovery import build
|
12 |
from typing import List, Optional
|
@@ -21,42 +20,20 @@ os.environ["VECTARA_CUSTOMER_ID"] = os.getenv("VECTARA_CUSTOMER_ID", "1452235940
|
|
21 |
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
|
22 |
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck")
|
23 |
|
24 |
-
# Initialize the Vectara index
|
25 |
index = VectaraIndex()
|
26 |
-
|
27 |
endpoint = 'https://api.together.xyz/inference'
|
28 |
|
29 |
-
# Load the hallucination evaluation model
|
30 |
-
model_name = "vectara/hallucination_evaluation_model"
|
31 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, trust_remote_code=True)
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
33 |
-
|
34 |
-
def vectara_hallucination_evaluation_model(text):
|
35 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
36 |
-
outputs = model(**inputs)
|
37 |
-
hallucination_probability = outputs.logits[0][0].item()
|
38 |
-
return hallucination_probability
|
39 |
-
|
40 |
def search_pubmed(query: str) -> Optional[List[str]]:
|
41 |
-
"""
|
42 |
-
Searches PubMed for a given query and returns a list of formatted results
|
43 |
-
(or None if no results are found).
|
44 |
-
"""
|
45 |
Entrez.email = "[email protected]"
|
46 |
-
|
47 |
try:
|
48 |
ssl._create_default_https_context = ssl._create_unverified_context
|
49 |
-
|
50 |
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
|
51 |
record = Entrez.read(handle)
|
52 |
id_list = record["IdList"]
|
53 |
-
|
54 |
if not id_list:
|
55 |
return None
|
56 |
-
|
57 |
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
|
58 |
articles = Entrez.read(handle)
|
59 |
-
|
60 |
results = []
|
61 |
for article in articles['PubmedArticle']:
|
62 |
try:
|
@@ -64,23 +41,17 @@ def search_pubmed(query: str) -> Optional[List[str]]:
|
|
64 |
article_data = medline_citation['Article']
|
65 |
title = article_data['ArticleTitle']
|
66 |
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
|
67 |
-
|
68 |
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
|
69 |
-
result += f"**Link:** https://pubmed.ncbi.nlm.gov/{medline_citation['PMID']}\n\n"
|
70 |
results.append(result)
|
71 |
except KeyError as e:
|
72 |
print(f"Error parsing article: {article}, Error: {e}")
|
73 |
-
|
74 |
return results
|
75 |
-
|
76 |
except Exception as e:
|
77 |
print(f"Error accessing PubMed: {e}")
|
78 |
return None
|
79 |
|
80 |
def chat_with_pubmed(article_text, article_link):
|
81 |
-
"""
|
82 |
-
Engages in a chat-like interaction with a PubMed article using TogetherLLM.
|
83 |
-
"""
|
84 |
try:
|
85 |
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
|
86 |
messages = [
|
@@ -94,19 +65,11 @@ def chat_with_pubmed(article_text, article_link):
|
|
94 |
return "An error occurred while generating a summary."
|
95 |
|
96 |
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
|
97 |
-
"""
|
98 |
-
Searches the web using the Google Search API and returns a list of formatted results
|
99 |
-
(or None if no results are found).
|
100 |
-
"""
|
101 |
try:
|
102 |
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
|
103 |
-
|
104 |
-
# Execute the search request
|
105 |
res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute()
|
106 |
-
|
107 |
if "items" not in res:
|
108 |
return None
|
109 |
-
|
110 |
results = []
|
111 |
for item in res["items"]:
|
112 |
title = item["title"]
|
@@ -114,26 +77,16 @@ def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
|
|
114 |
snippet = item["snippet"]
|
115 |
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
|
116 |
results.append(result)
|
117 |
-
|
118 |
return results
|
119 |
-
|
120 |
except Exception as e:
|
121 |
print(f"Error performing web search: {e}")
|
122 |
return None
|
123 |
|
124 |
def NEXUS_chatbot(user_input, chat_history=None):
|
125 |
-
"""
|
126 |
-
Processes user input, interacts with various resources, and generates a response.
|
127 |
-
Handles potential errors, maintains chat history, and evaluates hallucination risk.
|
128 |
-
"""
|
129 |
-
|
130 |
if chat_history is None:
|
131 |
chat_history = []
|
132 |
-
|
133 |
-
response_parts = [] # Collect responses from different sources
|
134 |
-
|
135 |
try:
|
136 |
-
# Vectara Search
|
137 |
try:
|
138 |
query_str = user_input
|
139 |
response = index.as_query_engine().query(query_str)
|
@@ -142,7 +95,6 @@ def NEXUS_chatbot(user_input, chat_history=None):
|
|
142 |
print(f"Error in Vectara search: {e}")
|
143 |
response_parts.append("Vectara knowledge base is currently unavailable.")
|
144 |
|
145 |
-
# PubMed Search and Chat
|
146 |
pubmed_results = search_pubmed(user_input)
|
147 |
if pubmed_results:
|
148 |
response_parts.append("**PubMed Articles (Chat & Summarize):**")
|
@@ -153,7 +105,6 @@ def NEXUS_chatbot(user_input, chat_history=None):
|
|
153 |
else:
|
154 |
response_parts.append("No relevant PubMed articles found.")
|
155 |
|
156 |
-
# Web Search
|
157 |
web_results = search_web(user_input)
|
158 |
if web_results:
|
159 |
response_parts.append("**Web Search Results:**")
|
@@ -161,24 +112,10 @@ def NEXUS_chatbot(user_input, chat_history=None):
|
|
161 |
else:
|
162 |
response_parts.append("No relevant web search results found.")
|
163 |
|
164 |
-
# Combine response parts into a single string
|
165 |
response_text = "\n\n".join(response_parts)
|
166 |
-
|
167 |
-
# Hallucination Evaluation
|
168 |
-
def vectara_hallucination_evaluation_model(text):
|
169 |
-
inputs = tokenizer(text, return_tensors="pt")
|
170 |
-
outputs = model(**inputs)
|
171 |
-
hallucination_probability = outputs.logits[0][0].item()
|
172 |
-
return hallucination_probability
|
173 |
-
|
174 |
-
hallucination_score = vectara_hallucination_evaluation_model(response_text)
|
175 |
-
HIGH_HALLUCINATION_THRESHOLD = 0.9
|
176 |
-
if hallucination_score > HIGH_HALLUCINATION_THRESHOLD:
|
177 |
-
response_text = "I'm still under development and learning. I cannot confidently answer this question yet."
|
178 |
-
|
179 |
except Exception as e:
|
180 |
print(f"Error in chatbot: {e}")
|
181 |
-
response_text = "An error occurred. Please try again later."
|
182 |
|
183 |
chat_history.append((user_input, response_text))
|
184 |
return response_text, chat_history
|
@@ -196,35 +133,26 @@ def show_info_popup():
|
|
196 |
* **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
|
197 |
* **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
|
198 |
* **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
|
199 |
-
* **Hallucination potential:** While NEXUS employs a hallucination evaluation model to minimize the risk of generating fabricated information, there remains a possibility of encountering inaccurate responses, especially for complex or niche queries.
|
200 |
**How to use:**
|
201 |
1. **Type your medical question in the text box.**
|
202 |
2. **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
|
203 |
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information.
|
204 |
-
4. **
|
205 |
-
5. **user can either chat with the documents or with generate resposne from vectara + pubmed + web search**
|
206 |
-
5. **chat with document feature is still under development so it would be better to avoid using it for now**
|
207 |
""")
|
208 |
|
209 |
-
# Initialize session state
|
210 |
if 'chat_history' not in st.session_state:
|
211 |
st.session_state.chat_history = []
|
212 |
|
213 |
-
# Define function to display chat history with highlighted user input and chatbot response
|
214 |
def display_chat_history():
|
215 |
for user_msg, bot_msg in st.session_state.chat_history:
|
216 |
st.info(f"**You:** {user_msg}")
|
217 |
st.success(f"**NEXUS:** {bot_msg}")
|
218 |
|
219 |
-
# Define function to clear chat history
|
220 |
def clear_chat():
|
221 |
st.session_state.chat_history = []
|
222 |
|
223 |
def main():
|
224 |
-
# Streamlit Page Configuration
|
225 |
st.set_page_config(page_title="NEXUS Chatbot", layout="wide")
|
226 |
-
|
227 |
-
# Custom Styles
|
228 |
st.markdown(
|
229 |
"""
|
230 |
<style>
|
@@ -249,12 +177,8 @@ def main():
|
|
249 |
""",
|
250 |
unsafe_allow_html=True,
|
251 |
)
|
252 |
-
|
253 |
-
# Title and Introduction
|
254 |
st.title("NEXUS Chatbot")
|
255 |
st.write("Ask your medical questions and get reliable information!")
|
256 |
-
|
257 |
-
# Example Questions (Sidebar)
|
258 |
example_questions = [
|
259 |
"What are the symptoms of COVID-19?",
|
260 |
"How can I manage my diabetes?",
|
@@ -264,25 +188,18 @@ def main():
|
|
264 |
st.sidebar.header("Example Questions")
|
265 |
for question in example_questions:
|
266 |
st.sidebar.write(question)
|
267 |
-
|
268 |
-
# Output Container
|
269 |
output_container = st.container()
|
270 |
-
|
271 |
-
# User Input and Chat History
|
272 |
input_container = st.container()
|
273 |
with input_container:
|
274 |
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
|
275 |
new_chat_button = st.button("Start New Chat")
|
276 |
if new_chat_button:
|
277 |
-
st.session_state.chat_history = []
|
278 |
-
|
279 |
if user_input:
|
280 |
response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history)
|
281 |
with output_container:
|
282 |
display_chat_history()
|
283 |
-
|
284 |
-
# Information Popup
|
285 |
show_info_popup()
|
286 |
|
287 |
if __name__ == "__main__":
|
288 |
-
main()
|
|
|
1 |
+
from llama_index import VectaraIndex
|
2 |
from dotenv import load_dotenv
|
3 |
import os
|
4 |
from docx import Document
|
5 |
+
from llama_index.llms import TogetherLLM
|
6 |
+
from llama_index.llms.base import ChatMessage, MessageRole
|
7 |
from Bio import Entrez
|
8 |
import ssl
|
|
|
9 |
import streamlit as st
|
10 |
from googleapiclient.discovery import build
|
11 |
from typing import List, Optional
|
|
|
20 |
os.environ["TOGETHER_API"] = os.getenv("TOGETHER_API", "7e6c200b7b36924bc1b4a5973859a20d2efa7180e9b5c977301173a6c099136b")
|
21 |
os.environ["GOOGLE_SEARCH_API_KEY"] = os.getenv("GOOGLE_SEARCH_API_KEY", "AIzaSyALmmMjvmrmHGtjjuPLEMy6Bp2qgMQJ3Ck")
|
22 |
|
|
|
23 |
index = VectaraIndex()
|
|
|
24 |
endpoint = 'https://api.together.xyz/inference'
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def search_pubmed(query: str) -> Optional[List[str]]:
|
|
|
|
|
|
|
|
|
27 |
Entrez.email = "[email protected]"
|
|
|
28 |
try:
|
29 |
ssl._create_default_https_context = ssl._create_unverified_context
|
|
|
30 |
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
|
31 |
record = Entrez.read(handle)
|
32 |
id_list = record["IdList"]
|
|
|
33 |
if not id_list:
|
34 |
return None
|
|
|
35 |
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
|
36 |
articles = Entrez.read(handle)
|
|
|
37 |
results = []
|
38 |
for article in articles['PubmedArticle']:
|
39 |
try:
|
|
|
41 |
article_data = medline_citation['Article']
|
42 |
title = article_data['ArticleTitle']
|
43 |
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
|
|
|
44 |
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
|
45 |
+
result += f"**Link:** https://pubmed.ncbi.nlm.nih.gov/{medline_citation['PMID']}\n\n"
|
46 |
results.append(result)
|
47 |
except KeyError as e:
|
48 |
print(f"Error parsing article: {article}, Error: {e}")
|
|
|
49 |
return results
|
|
|
50 |
except Exception as e:
|
51 |
print(f"Error accessing PubMed: {e}")
|
52 |
return None
|
53 |
|
54 |
def chat_with_pubmed(article_text, article_link):
|
|
|
|
|
|
|
55 |
try:
|
56 |
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
|
57 |
messages = [
|
|
|
65 |
return "An error occurred while generating a summary."
|
66 |
|
67 |
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
|
|
|
|
|
|
|
|
|
68 |
try:
|
69 |
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
|
|
|
|
|
70 |
res = service.cse().list(q=query, cx="6128965e5bcae442b", num=num_results).execute()
|
|
|
71 |
if "items" not in res:
|
72 |
return None
|
|
|
73 |
results = []
|
74 |
for item in res["items"]:
|
75 |
title = item["title"]
|
|
|
77 |
snippet = item["snippet"]
|
78 |
result = f"**Title:** {title}\n**Link:** {link}\n**Snippet:** {snippet}\n\n"
|
79 |
results.append(result)
|
|
|
80 |
return results
|
|
|
81 |
except Exception as e:
|
82 |
print(f"Error performing web search: {e}")
|
83 |
return None
|
84 |
|
85 |
def NEXUS_chatbot(user_input, chat_history=None):
|
|
|
|
|
|
|
|
|
|
|
86 |
if chat_history is None:
|
87 |
chat_history = []
|
88 |
+
response_parts = []
|
|
|
|
|
89 |
try:
|
|
|
90 |
try:
|
91 |
query_str = user_input
|
92 |
response = index.as_query_engine().query(query_str)
|
|
|
95 |
print(f"Error in Vectara search: {e}")
|
96 |
response_parts.append("Vectara knowledge base is currently unavailable.")
|
97 |
|
|
|
98 |
pubmed_results = search_pubmed(user_input)
|
99 |
if pubmed_results:
|
100 |
response_parts.append("**PubMed Articles (Chat & Summarize):**")
|
|
|
105 |
else:
|
106 |
response_parts.append("No relevant PubMed articles found.")
|
107 |
|
|
|
108 |
web_results = search_web(user_input)
|
109 |
if web_results:
|
110 |
response_parts.append("**Web Search Results:**")
|
|
|
112 |
else:
|
113 |
response_parts.append("No relevant web search results found.")
|
114 |
|
|
|
115 |
response_text = "\n\n".join(response_parts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
print(f"Error in chatbot: {e}")
|
118 |
+
response_text = f"An error occurred: {str(e)}. Please try again later or rephrase your question."
|
119 |
|
120 |
chat_history.append((user_input, response_text))
|
121 |
return response_text, chat_history
|
|
|
133 |
* **Not a substitute for professional medical advice:** NEXUS is not intended to replace professional medical diagnosis and treatment. Always consult a qualified healthcare provider for personalized medical advice.
|
134 |
* **General knowledge and educational purposes:** The information provided by NEXUS is for general knowledge and educational purposes only and may not be exhaustive or specific to individual situations.
|
135 |
* **Under development:** NEXUS is still under development and may occasionally provide inaccurate or incomplete information. It's important to critically evaluate responses and cross-reference with reliable sources.
|
|
|
136 |
**How to use:**
|
137 |
1. **Type your medical question in the text box.**
|
138 |
2. **NEXUS will provide a comprehensive response combining information from various sources.** This may include insights from its knowledge base, summaries of relevant research articles, and safe web search results.
|
139 |
3. **You can continue the conversation by asking follow-up questions or providing additional context.** This helps NEXUS refine its search and offer more tailored information.
|
140 |
+
4. **In case NEXUS doesn't show the output, please check your internet connection or rerun the same command.**
|
|
|
|
|
141 |
""")
|
142 |
|
|
|
143 |
if 'chat_history' not in st.session_state:
|
144 |
st.session_state.chat_history = []
|
145 |
|
|
|
146 |
def display_chat_history():
|
147 |
for user_msg, bot_msg in st.session_state.chat_history:
|
148 |
st.info(f"**You:** {user_msg}")
|
149 |
st.success(f"**NEXUS:** {bot_msg}")
|
150 |
|
|
|
151 |
def clear_chat():
|
152 |
st.session_state.chat_history = []
|
153 |
|
154 |
def main():
|
|
|
155 |
st.set_page_config(page_title="NEXUS Chatbot", layout="wide")
|
|
|
|
|
156 |
st.markdown(
|
157 |
"""
|
158 |
<style>
|
|
|
177 |
""",
|
178 |
unsafe_allow_html=True,
|
179 |
)
|
|
|
|
|
180 |
st.title("NEXUS Chatbot")
|
181 |
st.write("Ask your medical questions and get reliable information!")
|
|
|
|
|
182 |
example_questions = [
|
183 |
"What are the symptoms of COVID-19?",
|
184 |
"How can I manage my diabetes?",
|
|
|
188 |
st.sidebar.header("Example Questions")
|
189 |
for question in example_questions:
|
190 |
st.sidebar.write(question)
|
|
|
|
|
191 |
output_container = st.container()
|
|
|
|
|
192 |
input_container = st.container()
|
193 |
with input_container:
|
194 |
user_input = st.text_input("You: ", key="input_placeholder", placeholder="Type your medical question here...")
|
195 |
new_chat_button = st.button("Start New Chat")
|
196 |
if new_chat_button:
|
197 |
+
st.session_state.chat_history = []
|
|
|
198 |
if user_input:
|
199 |
response, st.session_state.chat_history = NEXUS_chatbot(user_input, st.session_state.chat_history)
|
200 |
with output_container:
|
201 |
display_chat_history()
|
|
|
|
|
202 |
show_info_popup()
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
main()
|