jayasuriyaK commited on
Commit
2dfa08b
·
verified ·
1 Parent(s): 0c579b9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -8
app.py CHANGED
@@ -2,16 +2,13 @@
2
  #python -m streamlit run d:/NSFW/Project/test1.py
3
  import torch
4
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
5
- #from transformers import BertTokenizer, BertForSequenceClassification
6
  import math, keras_ocr
7
  # Initialize pipeline
8
  pipeline = None
9
  model_path="NSFW_text_classifier"
10
- #tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
11
- #model_2 = BertForSequenceClassification.from_pretrained("CustomModel")
12
  tokenizer = AutoTokenizer.from_pretrained(model_path)
13
  model = AutoModelForSequenceClassification.from_pretrained(model_path)
14
- #model_2.to('cpu')
15
  import streamlit as st
16
 
17
  def get_distance(predictions):
@@ -107,10 +104,6 @@ if uploaded_file is not None:
107
 
108
  input_text =sentance
109
  print(input_text)
110
- #inputs = tokenizer(text,padding = True, truncation = True, return_tensors='pt').to('cpu')
111
- #outputs = model_2(**inputs)
112
- #predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
113
- #predictions = predictions.cpu().detach().numpy()
114
  inputs = tokenizer(input_text, return_tensors="pt")
115
  outputs = model(**inputs)
116
  predictions = outputs.logits.softmax(dim=-1)
 
2
  #python -m streamlit run d:/NSFW/Project/test1.py
3
  import torch
4
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
 
5
  import math, keras_ocr
6
  # Initialize pipeline
7
  pipeline = None
8
  model_path="NSFW_text_classifier"
 
 
9
  tokenizer = AutoTokenizer.from_pretrained(model_path)
10
  model = AutoModelForSequenceClassification.from_pretrained(model_path)
11
+
12
  import streamlit as st
13
 
14
  def get_distance(predictions):
 
104
 
105
  input_text =sentance
106
  print(input_text)
 
 
 
 
107
  inputs = tokenizer(input_text, return_tensors="pt")
108
  outputs = model(**inputs)
109
  predictions = outputs.logits.softmax(dim=-1)