Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,10 @@
|
|
1 |
#run the app
|
2 |
#python -m streamlit run d:/NSFW/Project/test1.py
|
3 |
import torch
|
4 |
-
import tensorflow as tf
|
5 |
from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
import math, keras_ocr
|
7 |
# Initialize pipeline
|
8 |
-
pipeline =
|
9 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
10 |
model_2 = BertForSequenceClassification.from_pretrained("CustomModel")
|
11 |
|
@@ -70,14 +69,19 @@ st.title("NSFW Content Detector")
|
|
70 |
# File uploader widget
|
71 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
72 |
|
|
|
|
|
|
|
|
|
|
|
73 |
if uploaded_file is not None:
|
74 |
st.image(uploaded_file, caption='Uploaded Image', width=200)
|
75 |
#st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
|
76 |
-
|
77 |
-
# Read in image
|
78 |
read_image = keras_ocr.tools.read(uploaded_file)
|
79 |
|
80 |
-
# prediction_groups is a list of (word, box) tuples
|
81 |
prediction_groups = pipeline.recognize([read_image])
|
82 |
predictions = prediction_groups[0] # extract text list
|
83 |
predictions = get_distance(predictions)
|
@@ -111,5 +115,4 @@ if uploaded_file is not None:
|
|
111 |
else:
|
112 |
print('Not safe')
|
113 |
st.write('Not Safe for Work')
|
114 |
-
pipeline = keras_ocr.pipeline.Pipeline()
|
115 |
|
|
|
1 |
#run the app
|
2 |
#python -m streamlit run d:/NSFW/Project/test1.py
|
3 |
import torch
|
|
|
4 |
from transformers import BertTokenizer, BertForSequenceClassification
|
5 |
import math, keras_ocr
|
6 |
# Initialize pipeline
|
7 |
+
pipeline = None
|
8 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
9 |
model_2 = BertForSequenceClassification.from_pretrained("CustomModel")
|
10 |
|
|
|
69 |
# File uploader widget
|
70 |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
71 |
|
72 |
+
def initialize():
|
73 |
+
global pipeline
|
74 |
+
if pipeline==None:
|
75 |
+
pipeline=keras_ocr.pipeline.Pipeline()
|
76 |
+
|
77 |
if uploaded_file is not None:
|
78 |
st.image(uploaded_file, caption='Uploaded Image', width=200)
|
79 |
#st.image(uploaded_file, caption='Uploaded Image', use_column_width=True)
|
80 |
+
initialize()
|
81 |
+
# Read in image
|
82 |
read_image = keras_ocr.tools.read(uploaded_file)
|
83 |
|
84 |
+
# prediction_groups is a list of (word, box) tuples
|
85 |
prediction_groups = pipeline.recognize([read_image])
|
86 |
predictions = prediction_groups[0] # extract text list
|
87 |
predictions = get_distance(predictions)
|
|
|
115 |
else:
|
116 |
print('Not safe')
|
117 |
st.write('Not Safe for Work')
|
|
|
118 |
|