File size: 1,741 Bytes
380d8f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"import re\n",
"import os\n",
"import torch\n",
"\n",
"#Speech to text\n",
"import whisper\n",
"\n",
"#QA\n",
"from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline\n",
"\n",
"#TTS\n",
"import tempfile\n",
"from TTS.utils.manage import ModelManager\n",
"from TTS.utils.synthesizer import Synthesizer\n",
"from typing import Optional"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n"
]
}
],
"source": [
"a = 0 if device == \"cuda\" else -1\n",
"print(a)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.6 ('whisper')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "bc5e005fe71b6b35d46ee1b846dc8ef412bb84e43eeae8b2cf038f4cf6818597"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|