|
import gradio as gr |
|
import re |
|
import os |
|
import torch |
|
|
|
|
|
import whisper |
|
|
|
|
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
|
|
import tempfile |
|
from TTS.utils.manage import ModelManager |
|
from TTS.utils.synthesizer import Synthesizer |
|
from typing import Optional |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
model = whisper.load_model("base", device = device) |
|
|
|
model_med = whisper.load_model("medium", device = device) |
|
|
|
|
|
model_name = "deepset/tinyroberta-squad2" |
|
|
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name, device = 0 if device == "cuda" else -1) |
|
|
|
|
|
tts_manager = ModelManager() |
|
MAX_TXT_LEN = 100 |
|
|
|
|
|
|
|
print(model.device) |
|
|
|
|
|
def whisper_stt(audio): |
|
|
|
audio = whisper.load_audio(audio) |
|
audio = whisper.pad_or_trim(audio) |
|
|
|
|
|
mel = whisper.log_mel_spectrogram(audio).to(model.device) |
|
|
|
|
|
_, probs = model.detect_language(mel) |
|
lang = max(probs, key=probs.get) |
|
print(f"Detected language: {max(probs, key=probs.get)}") |
|
|
|
|
|
options_transc = whisper.DecodingOptions(fp16 = False, language=lang, task='transcribe') |
|
options_transl = whisper.DecodingOptions(fp16 = False, language='en', task='translate') |
|
result_transc = whisper.decode(model_med, mel, options_transc) |
|
result_transl = whisper.decode(model_med, mel, options_transl) |
|
|
|
|
|
print(f"transcript is : {result_transc.text}") |
|
print(f"translation is : {result_transl.text}") |
|
|
|
return result_transc.text, result_transl.text, lang |
|
|
|
|
|
def tts(text: str, model_name: str): |
|
if len(text) > MAX_TXT_LEN: |
|
text = text[:MAX_TXT_LEN] |
|
print(f"Input text was cutoff since it went over the {MAX_TXT_LEN} character limit.") |
|
print(text, model_name) |
|
|
|
model_path, config_path, model_item = tts_manager.download_model(f"tts_models/{model_name}") |
|
vocoder_name: Optional[str] = model_item["default_vocoder"] |
|
|
|
vocoder_path = None |
|
vocoder_config_path = None |
|
if vocoder_name is not None: |
|
vocoder_path, vocoder_config_path, _ = tts_manager.download_model(vocoder_name) |
|
|
|
synthesizer = Synthesizer( |
|
model_path, config_path, None, None, vocoder_path, vocoder_config_path, |
|
) |
|
|
|
|
|
if synthesizer is None: |
|
raise NameError("model not found") |
|
wavs = synthesizer.tts(text) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: |
|
synthesizer.save_wav(wavs, fp) |
|
return fp.name |
|
|
|
def engine(audio, context): |
|
|
|
transcribe, translation, lang = whisper_stt(audio) |
|
|
|
|
|
answer = get_query_result(translation, context) |
|
|
|
answer_speech = tts(answer, model_name= 'en/ljspeech/tacotron2-DDC_ph') |
|
|
|
return translation, answer, answer_speech |
|
|
|
|
|
def get_query_result(query, context): |
|
|
|
QA_input = { |
|
'question': query, |
|
'context': context |
|
} |
|
answer = nlp(QA_input)['answer'] |
|
|
|
return answer |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
gr.Markdown("<h1><center>Voice to QA</center></h1>") |
|
gr.Markdown( |
|
"""<center> An app to ask voice queries about a text article.</center> |
|
""" |
|
) |
|
gr.Markdown( |
|
"""Model pipeline consisting of - <br>- [**Whisper**](https://github.com/openai/whisper)for Speech-to-text, <br>- [**Tiny Roberta QA**](https://huggingface.co/deepset/tinyroberta-squad2) for Question Answering, and <br>- [**CoquiTTS**](https://github.com/coqui-ai/TTS) for Text-To-Speech. |
|
<br> Just type/paste your text in the context field, and then ask voice questions.""") |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
in_audio = gr.Audio(source="microphone", type="filepath", label='Record your voice query here in English, Spanish or French for best results-') |
|
in_context = gr.Textbox(label="Context") |
|
b1 = gr.Button("Generate Answer") |
|
|
|
with gr.Column(): |
|
out_query = gr.Textbox('Your Query (Transcribed)') |
|
out_audio = gr.Audio(label = 'Voice response') |
|
out_textbox = gr.Textbox(label="Answer") |
|
|
|
b1.click(engine, inputs=[in_audio, in_context], outputs=[out_query, out_textbox, out_audio]) |
|
|
|
|
|
demo.launch(enable_queue=True, debug=True) |