File size: 700 Bytes
7ba9378 608b701 84de8c5 15c3ca6 608b701 15c3ca6 84de8c5 7ba9378 608b701 7ba9378 84de8c5 608b701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
from flask import Flask, render_template, request, jsonify
import model # Import your model module
from transformers import BertTokenizer
app = Flask(__name__)
# Load the model and tokenizer here
loaded_model = model.get_model()
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
@app.route('/', methods=['GET', 'POST'])
def home():
if request.method == 'POST':
data = request.json
user_input = data['text']
# Use your model to classify the text
prediction = model.predict(loaded_model, user_input, tokenizer)
return jsonify({'classification': prediction})
return render_template('home.html')
if __name__ == '__main__':
app.run() |