File size: 700 Bytes
7ba9378
 
608b701
84de8c5
 
 
15c3ca6
608b701
 
15c3ca6
84de8c5
7ba9378
 
 
 
 
 
608b701
7ba9378
84de8c5
 
 
 
608b701
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from flask import Flask, render_template, request, jsonify
import model  # Import your model module
from transformers import BertTokenizer

app = Flask(__name__)

# Load the model and tokenizer here
loaded_model = model.get_model()
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')


@app.route('/', methods=['GET', 'POST'])
def home():
    if request.method == 'POST':
        data = request.json
        user_input = data['text']
        # Use your model to classify the text
        prediction = model.predict(loaded_model, user_input, tokenizer)
        return jsonify({'classification': prediction})
    return render_template('home.html')


if __name__ == '__main__':
    app.run()