jaynopponep's picture
Update train.py
021a5c8 verified
raw
history blame
1.92 kB
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
# Load dataset
dataset_name = "NicolaiSivesind/human-vs-machine"
dataset = load_dataset(dataset_name)
# Tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
tokenized_dataset = tokenized_dataset.rename_column("original_label_name", "labels")
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
train_dataset = tokenized_dataset["train"]
eval_dataset = tokenized_dataset["validation"]
# Model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
# Training Arguments
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
logging_dir='./logs',
evaluation_strategy="steps",
save_steps=500,
logging_steps=100,
)
def compute_metrics(pred):
labels = pred.label_ids
preds = np.argmax(pred.predictions, axis=-1)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
acc = accuracy_score(labels, preds)
return {
'accuracy': acc,
'f1': f1,
'precision': precision,
'recall': recall
}
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics
)
trainer.train()
model.save_pretrained("./trained_model")
tokenizer.save_pretrained("./trained_model")