Update train.py
Browse files
train.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
2 |
-
from datasets import load_dataset
|
3 |
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
from datasets import Dataset
|
|
|
6 |
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
7 |
|
8 |
# Load dataset
|
@@ -15,12 +15,15 @@ tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
|
15 |
def tokenize_function(examples):
|
16 |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
train_dataset =
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
# Model
|
26 |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
@@ -62,3 +65,4 @@ trainer = Trainer(
|
|
62 |
trainer.train()
|
63 |
model.save_pretrained("./trained_model")
|
64 |
tokenizer.save_pretrained("./trained_model")
|
|
|
|
1 |
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
|
|
2 |
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
from datasets import Dataset
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
7 |
|
8 |
# Load dataset
|
|
|
15 |
def tokenize_function(examples):
|
16 |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
17 |
|
18 |
+
# Convert DataFrames to Datasets and apply tokenization
|
19 |
+
train_dataset = Dataset.from_pandas(train_df)
|
20 |
+
eval_dataset = Dataset.from_pandas(eval_df)
|
21 |
|
22 |
+
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
23 |
+
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
24 |
+
|
25 |
+
eval_dataset = eval_dataset.map(tokenize_function, batched=True)
|
26 |
+
eval_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
27 |
|
28 |
# Model
|
29 |
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
|
|
65 |
trainer.train()
|
66 |
model.save_pretrained("./trained_model")
|
67 |
tokenizer.save_pretrained("./trained_model")
|
68 |
+
|