Commit
·
7cc941c
1
Parent(s):
d03875a
removing train.py
Browse files
train.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
from datasets import Dataset
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
-
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
7 |
-
|
8 |
-
|
9 |
-
# Load dataset dynamically or from a config
|
10 |
-
df = pd.read_csv("AI_Human.csv")
|
11 |
-
train_df, eval_df = train_test_split(df, test_size=0.2)
|
12 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
13 |
-
|
14 |
-
def tokenize_function(examples):
|
15 |
-
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
16 |
-
|
17 |
-
# Convert DataFrames to Datasets and apply tokenization
|
18 |
-
train_dataset = Dataset.from_pandas(train_df)
|
19 |
-
eval_dataset = Dataset.from_pandas(eval_df)
|
20 |
-
|
21 |
-
train_dataset = train_dataset.map(tokenize_function, batched=True)
|
22 |
-
train_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
23 |
-
|
24 |
-
eval_dataset = eval_dataset.map(tokenize_function, batched=True)
|
25 |
-
eval_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
26 |
-
|
27 |
-
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
28 |
-
|
29 |
-
|
30 |
-
training_args = TrainingArguments(
|
31 |
-
output_dir="./results",
|
32 |
-
num_train_epochs=3,
|
33 |
-
per_device_train_batch_size=8,
|
34 |
-
per_device_eval_batch_size=8,
|
35 |
-
warmup_steps=500,
|
36 |
-
weight_decay=0.01,
|
37 |
-
logging_dir='./logs',
|
38 |
-
evaluation_strategy="steps",
|
39 |
-
save_steps=500,
|
40 |
-
logging_steps=100,
|
41 |
-
)
|
42 |
-
def compute_metrics(pred):
|
43 |
-
labels = pred.label_ids
|
44 |
-
preds = np.argmax(pred.predictions, axis=-1)
|
45 |
-
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
|
46 |
-
acc = accuracy_score(labels, preds)
|
47 |
-
return {
|
48 |
-
'accuracy': acc,
|
49 |
-
'f1': f1,
|
50 |
-
'precision': precision,
|
51 |
-
'recall': recall
|
52 |
-
}
|
53 |
-
|
54 |
-
trainer = Trainer(
|
55 |
-
model=model,
|
56 |
-
args=training_args,
|
57 |
-
train_dataset=train_dataset,
|
58 |
-
eval_dataset=eval_dataset,
|
59 |
-
compute_metrics=compute_metrics
|
60 |
-
)
|
61 |
-
|
62 |
-
trainer.train()
|
63 |
-
model.save_pretrained("./trained_model")
|
64 |
-
tokenizer.save_pretrained("./trained_model")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|