Commit
·
ad2ba33
1
Parent(s):
7fa7266
Evaluate model
Browse files- .idea/discord.xml +1 -1
- evaluate.py +62 -0
- train.py +1 -0
.idea/discord.xml
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
<project version="4">
|
3 |
<component name="DiscordProjectSettings">
|
4 |
-
<option name="show" value="
|
5 |
<option name="description" value="" />
|
6 |
</component>
|
7 |
</project>
|
|
|
1 |
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
<project version="4">
|
3 |
<component name="DiscordProjectSettings">
|
4 |
+
<option name="show" value="PROJECT_FILES" />
|
5 |
<option name="description" value="" />
|
6 |
</component>
|
7 |
</project>
|
evaluate.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from datasets import Dataset
|
4 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
5 |
+
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
6 |
+
|
7 |
+
# Load the saved model and tokenizer
|
8 |
+
def load_model_and_tokenizer(model_path):
|
9 |
+
model = BertForSequenceClassification.from_pretrained(model_path, num_labels=2)
|
10 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
11 |
+
return model, tokenizer
|
12 |
+
|
13 |
+
# Function to tokenize the evaluation dataset
|
14 |
+
def tokenize_function(examples, tokenizer):
|
15 |
+
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
16 |
+
|
17 |
+
# Load and prepare the evaluation dataset
|
18 |
+
def load_evaluation_data(file_path, tokenizer):
|
19 |
+
df = pd.read_csv(file_path)
|
20 |
+
eval_dataset = Dataset.from_pandas(df)
|
21 |
+
eval_dataset = eval_dataset.map(lambda examples: tokenize_function(examples, tokenizer), batched=True)
|
22 |
+
eval_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
23 |
+
return eval_dataset
|
24 |
+
|
25 |
+
# Define the compute_metrics function to be used by the Trainer
|
26 |
+
def compute_metrics(pred):
|
27 |
+
labels = pred.label_ids
|
28 |
+
preds = np.argmax(pred.predictions, axis=-1)
|
29 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='binary')
|
30 |
+
acc = accuracy_score(labels, preds)
|
31 |
+
return {
|
32 |
+
'accuracy': acc,
|
33 |
+
'f1': f1,
|
34 |
+
'precision': precision,
|
35 |
+
'recall': recall
|
36 |
+
}
|
37 |
+
|
38 |
+
# Evaluation function using Hugging Face's Trainer
|
39 |
+
def evaluate_model(model, tokenizer, eval_dataset):
|
40 |
+
training_args = TrainingArguments(
|
41 |
+
output_dir="./results",
|
42 |
+
per_device_eval_batch_size=8
|
43 |
+
)
|
44 |
+
trainer = Trainer(
|
45 |
+
model=model,
|
46 |
+
args=training_args,
|
47 |
+
eval_dataset=eval_dataset,
|
48 |
+
compute_metrics=compute_metrics
|
49 |
+
)
|
50 |
+
results = trainer.evaluate()
|
51 |
+
return results
|
52 |
+
|
53 |
+
# Main function to run the evaluation
|
54 |
+
if __name__ == "__main__":
|
55 |
+
model_path = "./trained_model" # Path where the model and tokenizer are saved
|
56 |
+
eval_data_path = "path_to_evaluation_data.csv" # Path to your evaluation dataset CSV file
|
57 |
+
|
58 |
+
model, tokenizer = load_model_and_tokenizer(model_path)
|
59 |
+
eval_dataset = load_evaluation_data(eval_data_path, tokenizer)
|
60 |
+
evaluation_results = evaluate_model(model, tokenizer, eval_dataset)
|
61 |
+
|
62 |
+
print("Evaluation Results:", evaluation_results)
|
train.py
CHANGED
@@ -13,6 +13,7 @@ train_df, eval_df = train_test_split(df, test_size=0.2)
|
|
13 |
# Tokenizer
|
14 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
15 |
|
|
|
16 |
def tokenize_function(examples):
|
17 |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
18 |
|
|
|
13 |
# Tokenizer
|
14 |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
15 |
|
16 |
+
|
17 |
def tokenize_function(examples):
|
18 |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
19 |
|