Commit
·
d4939c3
1
Parent(s):
608b701
Changing train.py
Browse files- .idea/.name +1 -1
- __pycache__/model.cpython-312.pyc +0 -0
- train.py +16 -10
.idea/.name
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
train.py
|
__pycache__/model.cpython-312.pyc
ADDED
Binary file (1.01 kB). View file
|
|
train.py
CHANGED
@@ -3,27 +3,31 @@ import torch
|
|
3 |
from transformers import BertTokenizer, Trainer, TrainingArguments
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
10 |
|
|
|
11 |
|
12 |
def tokenize_function(examples):
|
|
|
13 |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
14 |
|
15 |
-
|
16 |
def get_tokenizer():
|
17 |
-
|
18 |
-
|
|
|
|
|
19 |
|
20 |
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
21 |
tokenized_dataset = tokenized_dataset.rename_column("original_label_name", "labels")
|
22 |
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
|
|
23 |
train_dataset = tokenized_dataset["train"]
|
24 |
eval_dataset = tokenized_dataset["validation"]
|
25 |
model = get_model()
|
26 |
|
|
|
27 |
training_args = TrainingArguments(
|
28 |
output_dir="./results",
|
29 |
num_train_epochs=3,
|
@@ -32,17 +36,19 @@ training_args = TrainingArguments(
|
|
32 |
warmup_steps=500,
|
33 |
weight_decay=0.01,
|
34 |
logging_dir='./logs',
|
35 |
-
evaluation_strategy="steps"
|
|
|
|
|
36 |
)
|
37 |
|
38 |
trainer = Trainer(
|
39 |
model=model,
|
40 |
args=training_args,
|
41 |
train_dataset=train_dataset,
|
42 |
-
eval_dataset=eval_dataset
|
|
|
43 |
)
|
44 |
|
45 |
trainer.train()
|
46 |
model.save_pretrained("./trained_model")
|
47 |
tokenizer.save_pretrained("./trained_model")
|
48 |
-
|
|
|
3 |
from transformers import BertTokenizer, Trainer, TrainingArguments
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
# Load dataset dynamically or from a config
|
7 |
+
dataset_name = "NicolaiSivesind/human-vs-machine"
|
8 |
+
dataset = load_dataset(dataset_name)
|
|
|
9 |
|
10 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
11 |
|
12 |
def tokenize_function(examples):
|
13 |
+
# Add any specific preprocessing steps if necessary
|
14 |
return tokenizer(examples["text"], padding="max_length", truncation=True, max_length=512)
|
15 |
|
|
|
16 |
def get_tokenizer():
|
17 |
+
try:
|
18 |
+
return BertTokenizer.from_pretrained('./trained_model')
|
19 |
+
except Exception:
|
20 |
+
return BertTokenizer.from_pretrained('bert-base-uncased')
|
21 |
|
22 |
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
23 |
tokenized_dataset = tokenized_dataset.rename_column("original_label_name", "labels")
|
24 |
tokenized_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'labels'])
|
25 |
+
|
26 |
train_dataset = tokenized_dataset["train"]
|
27 |
eval_dataset = tokenized_dataset["validation"]
|
28 |
model = get_model()
|
29 |
|
30 |
+
# Make training arguments configurable
|
31 |
training_args = TrainingArguments(
|
32 |
output_dir="./results",
|
33 |
num_train_epochs=3,
|
|
|
36 |
warmup_steps=500,
|
37 |
weight_decay=0.01,
|
38 |
logging_dir='./logs',
|
39 |
+
evaluation_strategy="steps",
|
40 |
+
save_steps=500, # Save model every 500 steps
|
41 |
+
logging_steps=100,
|
42 |
)
|
43 |
|
44 |
trainer = Trainer(
|
45 |
model=model,
|
46 |
args=training_args,
|
47 |
train_dataset=train_dataset,
|
48 |
+
eval_dataset=eval_dataset,
|
49 |
+
compute_metrics=compute_metrics # Define this function to compute additional metrics
|
50 |
)
|
51 |
|
52 |
trainer.train()
|
53 |
model.save_pretrained("./trained_model")
|
54 |
tokenizer.save_pretrained("./trained_model")
|
|