Spaces:
Sleeping
Sleeping
File size: 4,178 Bytes
2201868 1f6dbae 2255b93 47d3394 6ba58ea 47d3394 1f6dbae 6ba58ea 9dfc63c 1f6dbae 66345ab 42edc6c 1f6dbae 42edc6c 2251f70 1f6dbae 2251f70 1f6dbae 6ba58ea 1f6dbae 42edc6c 1f6dbae 6ba58ea fc29cbf 95250f9 5cadf06 fc29cbf 95250f9 5cadf06 95250f9 5cadf06 95250f9 6ba58ea 95250f9 6ba58ea 2255b93 6ba58ea 2255b93 5cadf06 6ba58ea 9dfc63c fb31436 a62d15d 5cadf06 2251f70 6ba58ea 2255b93 bf44ad8 5cadf06 a62d15d 42edc6c 47d3394 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO
import os
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
try:
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
return None
# Load the model from Hugging Face
def load_model(model_path):
try:
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def predict(data):
try:
if not isinstance(data, list) or len(data) == 0:
return {"error": "Input data should be a non-empty list."}
image_input = data[0].get('image', None)
if not image_input:
return {"error": "No image provided."}
print(f"Received image input: {image_input}")
# Check if the input is a PIL Image type
if isinstance(image_input, Image.Image):
print(f"Image is already loaded as PIL Image: {image_input}")
else:
# Check if the input contains a base64-encoded string or URL
if image_input.startswith("http"): # URL case
try:
response = requests.get(image_input)
image = Image.open(BytesIO(response.content))
print(f"Fetched image from URL: {image}")
except Exception as e:
print(f"Error fetching image from URL: {e}")
return {"error": f"Error fetching image from URL: {e}"}
else: # Assuming it is base64-encoded image data
try:
image_data = base64.b64decode(image_input)
image = Image.open(BytesIO(image_data))
print(f"Decoded base64 image: {image}")
except Exception as e:
print(f"Error decoding base64 image: {e}")
return {"error": f"Error decoding base64 image: {e}"}
# Apply transformations
image = transform(image).unsqueeze(0)
print(f"Transformed image tensor: {image.shape}")
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
with torch.no_grad():
outputs = model(image)
predicted_class = torch.argmax(outputs, dim=1).item()
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")
if predicted_class == 0:
return {"result": "The photo you've sent is of fall army worm with problem ID 126."}
elif predicted_class == 1:
return {"result": "The photo you've sent is of a healthy maize image."}
else:
return {"error": "Unexpected class prediction."}
except Exception as e:
print(f"Error processing image: {e}")
return {"error": f"Error processing image: {e}"}
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.JSON(label="Input JSON"),
outputs=gr.JSON(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)
# Launch the Gradio interface
iface.launch(share=True, show_error=True)
|