Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import torch | |
from torch import nn | |
from torchvision import models, transforms | |
from PIL import Image | |
import os | |
# Define the number of classes | |
num_classes = 2 | |
# Download model from Hugging Face | |
def download_model(): | |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") | |
return model_path | |
# Load the model from Hugging Face | |
def load_model(model_path): | |
model = models.resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |
# Download the model and load it | |
model_path = download_model() | |
model = load_model(model_path) | |
# Define transformation for image processing | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
# Function to load and preprocess image | |
def load_image_from_path(image_path): | |
if not os.path.exists(image_path): | |
raise FileNotFoundError(f"Image file not found at {image_path}") | |
image = Image.open(image_path) | |
image = transform(image).unsqueeze(0) # Convert to tensor and add batch dimension | |
return image | |
# Load the model (Example: ResNet50) | |
def load_model(): | |
model = models.resnet50(pretrained=True) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load("model.pth")) | |
model.eval() | |
return model | |
# Predict from image tensor | |
def predict(image_tensor): | |
with torch.no_grad(): | |
outputs = model(image_tensor) | |
predicted_class = torch.argmax(outputs, dim=1).item() | |
return predicted_class | |
# Initialize model | |
model = load_model() | |
# Define the Gradio interface function | |
def predict_from_file(file_path): | |
try: | |
# Load image from path | |
image_tensor = load_image_from_path(file_path) | |
# Get prediction | |
predicted_class = predict(image_tensor) | |
result = {"result": "Fall armyworm" if predicted_class == 0 else "Healthy maize"} | |
return result | |
except Exception as e: | |
return {"error": str(e)} | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=predict_from_file, | |
inputs=gr.Textbox(label="Image Path (Local)"), | |
outputs=gr.JSON(), | |
live=True, | |
title="Maize Anomaly Detection", | |
description="Send a local file path via POST request to trigger prediction.", | |
) | |
# Launch the Gradio app | |
iface.launch(share=True, server_name="0.0.0.0", server_port=7860) | |