jays009's picture
Update app.py
2201868 verified
raw
history blame
4.12 kB
import gradio as gr
import json
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import requests
import base64
from io import BytesIO
import os
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
try:
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
except Exception as e:
print(f"Error downloading model: {e}")
return None
# Load the model from Hugging Face
def load_model(model_path):
try:
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
except Exception as e:
print(f"Error loading model: {e}")
return None
# Download the model and load it
model_path = download_model()
model = load_model(model_path) if model_path else None
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def predict(data):
try:
image_input = data.get('image', None)
if not image_input:
return json.dumps({"error": "No image provided."})
print(f"Received image input: {image_input}")
# Check if the input is a PIL Image type
if isinstance(image_input, Image.Image):
print(f"Image is already loaded as PIL Image: {image_input}")
else:
# Check if the input contains a base64-encoded string or URL
if image_input.startswith("http"): # URL case
try:
response = requests.get(image_input)
image = Image.open(BytesIO(response.content))
print(f"Fetched image from URL: {image}")
except Exception as e:
print(f"Error fetching image from URL: {e}")
return json.dumps({"error": f"Error fetching image from URL: {e}"})
else: # Assuming it is base64-encoded image data
try:
image_data = base64.b64decode(image_input)
image = Image.open(BytesIO(image_data))
print(f"Decoded base64 image: {image}")
except Exception as e:
print(f"Error decoding base64 image: {e}")
return json.dumps({"error": f"Error decoding base64 image: {e}"})
# Apply transformations
image = transform(image).unsqueeze(0)
print(f"Transformed image tensor: {image.shape}")
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
with torch.no_grad():
outputs = model(image)
predicted_class = torch.argmax(outputs, dim=1).item()
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")
if predicted_class == 0:
return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."})
elif predicted_class == 1:
return json.dumps({"result": "The photo you've sent is of a healthy maize image."})
else:
return json.dumps({"error": "Unexpected class prediction."})
except Exception as e:
print(f"Error processing image: {e}")
return json.dumps({"error": f"Error processing image: {e}"})
# Create the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.JSON(label="Input JSON"),
outputs=gr.Textbox(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
)
# Launch the Gradio interface
iface.launch(share=True, show_error=True)