jays009's picture
Update app.py
4dd171e verified
raw
history blame
2.65 kB
import gradio as gr
import torch
from torch import nn
from torchvision import models, transforms
from huggingface_hub import hf_hub_download
from PIL import Image
import os
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
# Define the number of classes
num_classes = 2
# Download model from Hugging Face
def download_model():
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin")
return model_path
# Load the model from Hugging Face
def load_model(model_path):
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
model.eval()
return model
# Download the model and load it
model_path = download_model()
model = load_model(model_path)
# Define the transformation for the input image
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
# Prediction function for an uploaded image
def predict_from_image(image):
try:
# Ensure the input is a valid PIL image
if not isinstance(image, Image.Image):
raise ValueError("Invalid image format received. Please provide a valid image.")
# Log the input for debugging
logging.info("Received image for prediction")
# Apply transformations
image_tensor = transform(image).unsqueeze(0)
# Predict
with torch.no_grad():
outputs = model(image_tensor)
predicted_class = torch.argmax(outputs, dim=1).item()
# Interpret the result
if predicted_class == 0:
return {"result": "The photo is of fall army worm with problem ID 126."}
elif predicted_class == 1:
return {"result": "The photo is of a healthy maize image."}
else:
return {"error": "Unexpected class prediction."}
except Exception as e:
logging.error(f"Error during prediction: {str(e)}")
return {"error": f"Failed to process the image: {str(e)}"}
# Gradio interface restricted to image input
iface = gr.Interface(
fn=predict_from_image, # Only handle image input
inputs=gr.Image(type="pil", label="Upload an Image"), # Restrict input to image upload
outputs=gr.JSON(label="Prediction Result"),
live=True,
title="Maize Anomaly Detection",
description="Upload an image to detect anomalies in maize crops.",
)
# Launch the interface locally
if __name__ == "__main__":
iface.launch()