Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torch import nn | |
from torchvision import models, transforms | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
num_classes = 2 | |
def download_model(): | |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") | |
return model_path | |
def load_model(model_path): | |
model = models.resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |
model_path = download_model() | |
model = load_model(model_path) | |
transform = transforms.Compose([ | |
transforms.Resize(256), # Resize the image to 256x256 | |
transforms.CenterCrop(224), # Crop the image to 224x224 | |
transforms.ToTensor(), # Convert the image to a Tensor | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
def predict(image): | |
image = transform(image).unsqueeze(0) | |
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
with torch.no_grad(): | |
outputs = model(image) | |
predicted_class = torch.argmax(outputs, dim=1).item() | |
if predicted_class == 0: | |
return "The photo you've sent is of fall army worm with problem ID 126." | |
elif predicted_class == 1: | |
return "The photo you've sent is of a healthy wheat image." | |
else: | |
return "Unexpected class prediction." | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Textbox(), | |
live=True, | |
title="Maize Anomaly Detection", | |
description="Upload an image of maize to detect anomalies like disease or pest infestation." | |
) | |
iface.launch() | |