Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import torch | |
from torch import nn | |
from torchvision import models, transforms | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
import requests | |
import base64 | |
from io import BytesIO | |
import os | |
# Define the number of classes | |
num_classes = 2 | |
# Download model from Hugging Face | |
def download_model(): | |
try: | |
model_path = hf_hub_download(repo_id="jays009/Restnet50", filename="pytorch_model.bin") | |
return model_path | |
except Exception as e: | |
print(f"Error downloading model: {e}") | |
return None | |
# Load the model from Hugging Face | |
def load_model(model_path): | |
try: | |
model = models.resnet50(pretrained=False) | |
model.fc = nn.Linear(model.fc.in_features, num_classes) | |
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) | |
model.eval() | |
return model | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
return None | |
# Download the model and load it | |
model_path = download_model() | |
model = load_model(model_path) if model_path else None | |
# Define the transformation for the input image | |
transform = transforms.Compose([ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
def predict(data): | |
try: | |
# Check if the data is a list and not empty | |
if not isinstance(data, list) or len(data) == 0: | |
return json.dumps({"error": "Input data should be a non-empty list."}) | |
# Extract the image path | |
image_input = data[0].get('path', None) | |
if not image_input: | |
return json.dumps({"error": "No image path provided."}) | |
print(f"Received image input: {image_input}") | |
# Handle URLs | |
if isinstance(image_input, str) and (image_input.startswith("http://") or image_input.startswith("https://")): | |
try: | |
response = requests.get(image_input) | |
response.raise_for_status() # Check for HTTP errors | |
image = Image.open(BytesIO(response.content)) | |
print(f"Fetched image from URL: {image}") | |
except Exception as e: | |
print(f"Error fetching image from URL: {e}") | |
return json.dumps({"error": f"Error fetching image from URL: {e}"}) | |
# Check if the image path is a valid local path | |
elif isinstance(image_input, str) and os.path.exists(image_input): | |
try: | |
image = Image.open(image_input) | |
print(f"Loaded image from local path: {image}") | |
except Exception as e: | |
return json.dumps({"error": f"Error loading image from local path: {e}"}) | |
else: | |
return json.dumps({"error": "Invalid image path. Ensure it's a valid URL or local path."}) | |
# Apply the transformations and make prediction | |
image = transform(image).unsqueeze(0) | |
print(f"Transformed image tensor: {image.shape}") | |
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
with torch.no_grad(): | |
outputs = model(image) | |
predicted_class = torch.argmax(outputs, dim=1).item() | |
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}") | |
# Return the result based on the predicted class | |
if predicted_class == 0: | |
return json.dumps({"result": "The photo you've sent is of fall army worm with problem ID 126."}) | |
elif predicted_class == 1: | |
return json.dumps({"result": "The photo you've sent is of a healthy maize image."}) | |
else: | |
return json.dumps({"error": "Unexpected class prediction."}) | |
except Exception as e: | |
print(f"Error processing image: {e}") | |
return json.dumps({"error": f"Error processing image: {e}"}) | |