Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ from PIL import Image
|
|
6 |
import requests
|
7 |
import base64
|
8 |
from io import BytesIO
|
9 |
-
import os
|
10 |
|
11 |
# Define the number of classes
|
12 |
num_classes = 2 # Update with the actual number of classes in your dataset
|
@@ -34,23 +33,16 @@ transform = transforms.Compose([
|
|
34 |
])
|
35 |
|
36 |
# Prediction function
|
37 |
-
def process_image(
|
38 |
try:
|
39 |
-
#
|
40 |
-
if
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
response = requests.get(data["url"])
|
48 |
-
image = Image.open(BytesIO(response.content))
|
49 |
-
elif "path" in data:
|
50 |
-
# Local path image loading
|
51 |
-
image = Image.open(data["path"])
|
52 |
-
else:
|
53 |
-
return "Invalid input data structure."
|
54 |
|
55 |
# Validate image
|
56 |
if not isinstance(image, Image.Image):
|
@@ -77,11 +69,14 @@ def process_image(data):
|
|
77 |
# Create the Gradio interface
|
78 |
iface = gr.Interface(
|
79 |
fn=process_image,
|
80 |
-
inputs=
|
|
|
|
|
|
|
81 |
outputs=gr.Textbox(label="Prediction Result"), # Output: Prediction result
|
82 |
live=True,
|
83 |
title="Maize Anomaly Detection",
|
84 |
-
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can
|
85 |
)
|
86 |
|
87 |
# Launch the Gradio interface
|
|
|
6 |
import requests
|
7 |
import base64
|
8 |
from io import BytesIO
|
|
|
9 |
|
10 |
# Define the number of classes
|
11 |
num_classes = 2 # Update with the actual number of classes in your dataset
|
|
|
33 |
])
|
34 |
|
35 |
# Prediction function
|
36 |
+
def process_image(image, image_url=None):
|
37 |
try:
|
38 |
+
# Handle URL-based image loading
|
39 |
+
if image_url:
|
40 |
+
response = requests.get(image_url)
|
41 |
+
image = Image.open(BytesIO(response.content))
|
42 |
+
|
43 |
+
# Handle local file path image loading (Gradio File input)
|
44 |
+
elif isinstance(image, str) and os.path.isfile(image):
|
45 |
+
image = Image.open(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Validate image
|
48 |
if not isinstance(image, Image.Image):
|
|
|
69 |
# Create the Gradio interface
|
70 |
iface = gr.Interface(
|
71 |
fn=process_image,
|
72 |
+
inputs=[
|
73 |
+
gr.File(label="Upload an image (Local File Path)"), # Input: Local file
|
74 |
+
gr.Textbox(label="Enter Image URL", placeholder="Enter image URL here (optional)", optional=True) # Input: Image URL (optional)
|
75 |
+
],
|
76 |
outputs=gr.Textbox(label="Prediction Result"), # Output: Prediction result
|
77 |
live=True,
|
78 |
title="Maize Anomaly Detection",
|
79 |
+
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can upload local images or provide an image URL."
|
80 |
)
|
81 |
|
82 |
# Launch the Gradio interface
|