Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,43 +5,45 @@ from torchvision import models, transforms
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
# Download model
|
11 |
def download_model():
|
12 |
-
model_path = hf_hub_download(repo_id="
|
13 |
return model_path
|
14 |
|
15 |
-
# Load the model from
|
16 |
def load_model(model_path):
|
17 |
-
model = models.resnet50(pretrained=False) # Set pretrained=False
|
18 |
-
model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust
|
19 |
-
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) # Load model
|
20 |
-
model.eval() # Set
|
21 |
return model
|
22 |
|
23 |
-
# Download and load
|
24 |
-
model_path = download_model()
|
25 |
model = load_model(model_path)
|
26 |
|
27 |
-
#
|
28 |
transform = transforms.Compose([
|
29 |
transforms.Resize(256), # Resize the image to 256x256
|
30 |
transforms.CenterCrop(224), # Crop the image to 224x224
|
31 |
transforms.ToTensor(), # Convert the image to a Tensor
|
32 |
-
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # Normalize
|
33 |
])
|
34 |
|
35 |
-
#
|
36 |
def predict(image):
|
|
|
37 |
image = transform(image).unsqueeze(0) # Add batch dimension
|
38 |
-
image = image.to(torch.device("cpu")) # Move
|
39 |
-
|
40 |
with torch.no_grad():
|
41 |
outputs = model(image) # Perform forward pass
|
42 |
-
predicted_class = torch.argmax(outputs, dim=1).item() # Get the predicted class
|
43 |
-
|
44 |
-
#
|
45 |
if predicted_class == 0:
|
46 |
return "The photo you've sent is of fall army worm with problem ID 126."
|
47 |
elif predicted_class == 1:
|
@@ -51,14 +53,13 @@ def predict(image):
|
|
51 |
|
52 |
# Create the Gradio interface
|
53 |
iface = gr.Interface(
|
54 |
-
fn=predict, #
|
55 |
-
inputs=gr.Image(type="pil"), # Image input
|
56 |
-
outputs=gr.Textbox(), #
|
57 |
-
live=True, #
|
58 |
-
title="
|
59 |
-
description="Upload an image of
|
60 |
)
|
61 |
|
62 |
-
#
|
63 |
-
iface.launch
|
64 |
-
|
|
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
from PIL import Image
|
7 |
|
8 |
+
# Define the number of classes
|
9 |
+
num_classes = 2 # Update with the actual number of classes in your dataset (e.g., 2 for healthy and anomalous)
|
10 |
|
11 |
+
# Download model from Hugging Face
|
12 |
def download_model():
|
13 |
+
model_path = hf_hub_download(repo_id="your_huggingface_username/your_model_name", filename="pytorch_model.bin")
|
14 |
return model_path
|
15 |
|
16 |
+
# Load the model from Hugging Face
|
17 |
def load_model(model_path):
|
18 |
+
model = models.resnet50(pretrained=False) # Set pretrained=False because you're loading custom weights
|
19 |
+
model.fc = nn.Linear(model.fc.in_features, num_classes) # Adjust for the number of classes in your dataset
|
20 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu"))) # Load model on CPU for compatibility
|
21 |
+
model.eval() # Set to evaluation mode
|
22 |
return model
|
23 |
|
24 |
+
# Download the model and load it
|
25 |
+
model_path = download_model() # Downloads the model from Hugging Face Hub
|
26 |
model = load_model(model_path)
|
27 |
|
28 |
+
# Define the transformation for the input image
|
29 |
transform = transforms.Compose([
|
30 |
transforms.Resize(256), # Resize the image to 256x256
|
31 |
transforms.CenterCrop(224), # Crop the image to 224x224
|
32 |
transforms.ToTensor(), # Convert the image to a Tensor
|
33 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), # Normalize the image (ImageNet mean and std)
|
34 |
])
|
35 |
|
36 |
+
# Define the prediction function
|
37 |
def predict(image):
|
38 |
+
# Apply the necessary transformations to the image
|
39 |
image = transform(image).unsqueeze(0) # Add batch dimension
|
40 |
+
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu")) # Move to GPU if available
|
41 |
+
|
42 |
with torch.no_grad():
|
43 |
outputs = model(image) # Perform forward pass
|
44 |
+
predicted_class = torch.argmax(outputs, dim=1).item() # Get the predicted class
|
45 |
+
|
46 |
+
# Create a response based on the predicted class
|
47 |
if predicted_class == 0:
|
48 |
return "The photo you've sent is of fall army worm with problem ID 126."
|
49 |
elif predicted_class == 1:
|
|
|
53 |
|
54 |
# Create the Gradio interface
|
55 |
iface = gr.Interface(
|
56 |
+
fn=predict, # Function for prediction
|
57 |
+
inputs=gr.Image(type="pil"), # Image input
|
58 |
+
outputs=gr.Textbox(), # Output: Predicted class
|
59 |
+
live=True, # Updates as the user uploads an image
|
60 |
+
title="Wheat Anomaly Detection",
|
61 |
+
description="Upload an image of wheat to detect anomalies like disease or pest infestation."
|
62 |
)
|
63 |
|
64 |
+
# Launch the Gradio interface
|
65 |
+
iface.launch()
|
|