Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,6 @@ from torchvision import models, transforms
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from PIL import Image
|
8 |
import requests
|
9 |
-
import os
|
10 |
-
import base64
|
11 |
from io import BytesIO
|
12 |
|
13 |
# Define the number of classes
|
@@ -46,17 +44,14 @@ transform = transforms.Compose([
|
|
46 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
47 |
])
|
48 |
|
49 |
-
def
|
50 |
try:
|
51 |
-
print(f"Received image input: {image}")
|
52 |
-
|
53 |
# Check if the input is a PIL Image type (Gradio automatically provides a PIL image)
|
54 |
if not isinstance(image, Image.Image):
|
55 |
return json.dumps({"error": "Invalid image format received. Please provide a valid image."})
|
56 |
|
57 |
# Apply transformations to the image
|
58 |
image = transform(image).unsqueeze(0)
|
59 |
-
print(f"Transformed image tensor: {image.shape}")
|
60 |
|
61 |
# Move the image to the correct device
|
62 |
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
@@ -65,7 +60,6 @@ def predict(image):
|
|
65 |
with torch.no_grad():
|
66 |
outputs = model(image)
|
67 |
predicted_class = torch.argmax(outputs, dim=1).item()
|
68 |
-
print(f"Prediction output: {outputs}, Predicted class: {predicted_class}")
|
69 |
|
70 |
# Return the result based on the predicted class
|
71 |
if predicted_class == 0:
|
@@ -76,18 +70,43 @@ def predict(image):
|
|
76 |
return json.dumps({"error": "Unexpected class prediction."})
|
77 |
|
78 |
except Exception as e:
|
79 |
-
print(f"Error processing image: {e}")
|
80 |
return json.dumps({"error": f"Error processing image: {e}"})
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# Create the Gradio interface
|
83 |
iface = gr.Interface(
|
84 |
-
fn=
|
85 |
-
inputs=gr.Image(type="pil", label="Upload an image or provide a
|
86 |
outputs=gr.Textbox(label="Prediction Result"),
|
87 |
live=True,
|
88 |
title="Maize Anomaly Detection",
|
89 |
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
|
90 |
)
|
91 |
|
92 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
iface.launch(share=True, show_error=True)
|
|
|
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
from PIL import Image
|
8 |
import requests
|
|
|
|
|
9 |
from io import BytesIO
|
10 |
|
11 |
# Define the number of classes
|
|
|
44 |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
45 |
])
|
46 |
|
47 |
+
def predict_from_image(image):
|
48 |
try:
|
|
|
|
|
49 |
# Check if the input is a PIL Image type (Gradio automatically provides a PIL image)
|
50 |
if not isinstance(image, Image.Image):
|
51 |
return json.dumps({"error": "Invalid image format received. Please provide a valid image."})
|
52 |
|
53 |
# Apply transformations to the image
|
54 |
image = transform(image).unsqueeze(0)
|
|
|
55 |
|
56 |
# Move the image to the correct device
|
57 |
image = image.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
|
|
60 |
with torch.no_grad():
|
61 |
outputs = model(image)
|
62 |
predicted_class = torch.argmax(outputs, dim=1).item()
|
|
|
63 |
|
64 |
# Return the result based on the predicted class
|
65 |
if predicted_class == 0:
|
|
|
70 |
return json.dumps({"error": "Unexpected class prediction."})
|
71 |
|
72 |
except Exception as e:
|
|
|
73 |
return json.dumps({"error": f"Error processing image: {e}"})
|
74 |
|
75 |
+
|
76 |
+
def predict_from_url(url):
|
77 |
+
try:
|
78 |
+
# Check if the URL is valid and try fetching the image
|
79 |
+
response = requests.get(url)
|
80 |
+
if response.status_code == 200:
|
81 |
+
img = Image.open(BytesIO(response.content))
|
82 |
+
# Call the predict function for the image
|
83 |
+
return predict_from_image(img)
|
84 |
+
else:
|
85 |
+
return json.dumps({"error": "Unable to fetch image from the URL."})
|
86 |
+
except Exception as e:
|
87 |
+
return json.dumps({"error": f"Error fetching image from URL: {e}"})
|
88 |
+
|
89 |
+
|
90 |
# Create the Gradio interface
|
91 |
iface = gr.Interface(
|
92 |
+
fn=predict_from_image,
|
93 |
+
inputs=gr.Image(type="pil", label="Upload an image or provide a local path"),
|
94 |
outputs=gr.Textbox(label="Prediction Result"),
|
95 |
live=True,
|
96 |
title="Maize Anomaly Detection",
|
97 |
description="Upload an image of maize to detect anomalies like disease or pest infestation. You can provide local paths, URLs, or base64-encoded images."
|
98 |
)
|
99 |
|
100 |
+
# Add another function for URL input
|
101 |
+
url_iface = gr.Interface(
|
102 |
+
fn=predict_from_url,
|
103 |
+
inputs=gr.Textbox(label="Enter image URL"),
|
104 |
+
outputs=gr.Textbox(label="Prediction Result from URL"),
|
105 |
+
live=True,
|
106 |
+
title="Maize Anomaly Detection from URL",
|
107 |
+
description="Provide an image URL to detect anomalies like disease or pest infestation."
|
108 |
+
)
|
109 |
+
|
110 |
+
# Launch the Gradio interface
|
111 |
iface.launch(share=True, show_error=True)
|
112 |
+
url_iface.launch(share=True, show_error=True)
|